{"title":"从表示映射的角度看弗里德里希和克雷恩型扩展","authors":"S. Hassi, H. S. V. de Snoo","doi":"10.1007/s43034-024-00380-7","DOIUrl":null,"url":null,"abstract":"<div><p>A semibounded operator or relation <i>S</i> in a Hilbert space with lower bound <span>\\(\\gamma \\in {{\\mathbb {R}}}\\)</span> has a symmetric extension <span>\\(S_\\textrm{f}=S \\, \\widehat{+} \\,(\\{0\\} \\times \\mathrm{mul\\,}S^*)\\)</span>, the weak Friedrichs extension of <i>S</i>, and a selfadjoint extension <span>\\(S_{\\textrm{F}}\\)</span>, the Friedrichs extension of <i>S</i>, that satisfy <span>\\(S \\subset S_{\\textrm{f}} \\subset S_\\textrm{F}\\)</span>. The Friedrichs extension <span>\\(S_{\\textrm{F}}\\)</span> has lower bound <span>\\(\\gamma \\)</span> and it is the largest semibounded selfadjoint extension of <i>S</i>. Likewise, for each <span>\\(c \\le \\gamma \\)</span>, the relation <i>S</i> has a weak Kreĭn type extension <span>\\(S_{\\textrm{k},c}=S \\, \\widehat{+} \\,(\\mathrm{ker\\,}(S^*-c) \\times \\{0\\})\\)</span> and Kreĭn type extension <span>\\(S_{\\textrm{K},c}\\)</span> of <i>S</i>, that satisfy <span>\\(S \\subset S_{\\textrm{k},c} \\subset S_{\\textrm{K},c}\\)</span>. The Kreĭn type extension <span>\\(S_{\\textrm{K},c}\\)</span> has lower bound <i>c</i> and it is the smallest semibounded selfadjoint extension of <i>S</i> which is bounded below by <i>c</i>. In this paper these special extensions and, more generally, all extremal extensions of <i>S</i> are constructed via the semibounded sesquilinear form <span>\\({{\\mathfrak {t}}}(S)\\)</span> that is associated with <i>S</i>; the representing map for the form <span>\\({{\\mathfrak {t}}}(S)-c\\)</span> plays an essential role here.</p></div>","PeriodicalId":48858,"journal":{"name":"Annals of Functional Analysis","volume":"15 4","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s43034-024-00380-7.pdf","citationCount":"0","resultStr":"{\"title\":\"Friedrichs and Kreĭn type extensions in terms of representing maps\",\"authors\":\"S. Hassi, H. S. V. de Snoo\",\"doi\":\"10.1007/s43034-024-00380-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A semibounded operator or relation <i>S</i> in a Hilbert space with lower bound <span>\\\\(\\\\gamma \\\\in {{\\\\mathbb {R}}}\\\\)</span> has a symmetric extension <span>\\\\(S_\\\\textrm{f}=S \\\\, \\\\widehat{+} \\\\,(\\\\{0\\\\} \\\\times \\\\mathrm{mul\\\\,}S^*)\\\\)</span>, the weak Friedrichs extension of <i>S</i>, and a selfadjoint extension <span>\\\\(S_{\\\\textrm{F}}\\\\)</span>, the Friedrichs extension of <i>S</i>, that satisfy <span>\\\\(S \\\\subset S_{\\\\textrm{f}} \\\\subset S_\\\\textrm{F}\\\\)</span>. The Friedrichs extension <span>\\\\(S_{\\\\textrm{F}}\\\\)</span> has lower bound <span>\\\\(\\\\gamma \\\\)</span> and it is the largest semibounded selfadjoint extension of <i>S</i>. Likewise, for each <span>\\\\(c \\\\le \\\\gamma \\\\)</span>, the relation <i>S</i> has a weak Kreĭn type extension <span>\\\\(S_{\\\\textrm{k},c}=S \\\\, \\\\widehat{+} \\\\,(\\\\mathrm{ker\\\\,}(S^*-c) \\\\times \\\\{0\\\\})\\\\)</span> and Kreĭn type extension <span>\\\\(S_{\\\\textrm{K},c}\\\\)</span> of <i>S</i>, that satisfy <span>\\\\(S \\\\subset S_{\\\\textrm{k},c} \\\\subset S_{\\\\textrm{K},c}\\\\)</span>. The Kreĭn type extension <span>\\\\(S_{\\\\textrm{K},c}\\\\)</span> has lower bound <i>c</i> and it is the smallest semibounded selfadjoint extension of <i>S</i> which is bounded below by <i>c</i>. In this paper these special extensions and, more generally, all extremal extensions of <i>S</i> are constructed via the semibounded sesquilinear form <span>\\\\({{\\\\mathfrak {t}}}(S)\\\\)</span> that is associated with <i>S</i>; the representing map for the form <span>\\\\({{\\\\mathfrak {t}}}(S)-c\\\\)</span> plays an essential role here.</p></div>\",\"PeriodicalId\":48858,\"journal\":{\"name\":\"Annals of Functional Analysis\",\"volume\":\"15 4\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s43034-024-00380-7.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Functional Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s43034-024-00380-7\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s43034-024-00380-7","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
希尔伯特空间中具有下界的半界算子或关系 S 有一个对称外延(S_textrm{f}=S \, \widehat{+} \,(\{0\} \times \mathrm{mul\、),即 S 的弱 Friedrichs 扩展,以及一个自交扩展 \(S_{textrm{F}}\),即 S 的 Friedrichs 扩展,满足 \(S \subset S_{textrm{f}} \subset S_textrm{F}}\)。Friedrichs 扩展 \(S_{textrm{F}}\)有下界 \(\gamma \),它是 S 的最大半边界自交扩展。同样,对于每一个(c le \gamma \),关系 S 有一个弱 Kreĭn 类型的扩展 (S_{textrm{k},c}=S \, \widehat{+} \,(\mathrm{ker\、(S^*-c) times\{0\}) 和 S 的 Kreĭn 型扩展 \(S_{textrm{K},c}\) that satisfy \(S \subset S_{textrm{k},c} \subset S_{textrm{K},c}\).Kreĭn 型扩展 \(S_{textrm{K},c}/)的下界为 c,它是 S 的最小半界自交扩展,其下界为 c。在本文中,这些特殊的扩展,以及更广义地说,S 的所有极值扩展都是通过与 S 相关联的半约束倍线性形式 \({{\mathfrak {t}}(S)\) 构造出来的;形式 \({{\mathfrak {t}}(S)-c\) 的表示映射在这里起着至关重要的作用。
Friedrichs and Kreĭn type extensions in terms of representing maps
A semibounded operator or relation S in a Hilbert space with lower bound \(\gamma \in {{\mathbb {R}}}\) has a symmetric extension \(S_\textrm{f}=S \, \widehat{+} \,(\{0\} \times \mathrm{mul\,}S^*)\), the weak Friedrichs extension of S, and a selfadjoint extension \(S_{\textrm{F}}\), the Friedrichs extension of S, that satisfy \(S \subset S_{\textrm{f}} \subset S_\textrm{F}\). The Friedrichs extension \(S_{\textrm{F}}\) has lower bound \(\gamma \) and it is the largest semibounded selfadjoint extension of S. Likewise, for each \(c \le \gamma \), the relation S has a weak Kreĭn type extension \(S_{\textrm{k},c}=S \, \widehat{+} \,(\mathrm{ker\,}(S^*-c) \times \{0\})\) and Kreĭn type extension \(S_{\textrm{K},c}\) of S, that satisfy \(S \subset S_{\textrm{k},c} \subset S_{\textrm{K},c}\). The Kreĭn type extension \(S_{\textrm{K},c}\) has lower bound c and it is the smallest semibounded selfadjoint extension of S which is bounded below by c. In this paper these special extensions and, more generally, all extremal extensions of S are constructed via the semibounded sesquilinear form \({{\mathfrak {t}}}(S)\) that is associated with S; the representing map for the form \({{\mathfrak {t}}}(S)-c\) plays an essential role here.
期刊介绍:
Annals of Functional Analysis is published by Birkhäuser on behalf of the Tusi Mathematical Research Group.
Ann. Funct. Anal. is a peer-reviewed electronic journal publishing papers of high standards with deep results, new ideas, profound impact, and significant implications in all areas of functional analysis and all modern related topics (e.g., operator theory). Ann. Funct. Anal. normally publishes original research papers numbering 18 or fewer pages in the journal’s style. Longer papers may be submitted to the Banach Journal of Mathematical Analysis or Advances in Operator Theory.
Ann. Funct. Anal. presents the best paper award yearly. The award in the year n is given to the best paper published in the years n-1 and n-2. The referee committee consists of selected editors of the journal.