基于可光刻图案化 SU-8/石墨烯纳米复合材料的应变传感器,用于软-MEMS 应用

IF 2.4 4区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Faizan Tariq Beigh, Nadeem Tariq Beigh and Dhiman Mallick
{"title":"基于可光刻图案化 SU-8/石墨烯纳米复合材料的应变传感器,用于软-MEMS 应用","authors":"Faizan Tariq Beigh, Nadeem Tariq Beigh and Dhiman Mallick","doi":"10.1088/1361-6439/ad690e","DOIUrl":null,"url":null,"abstract":"This paper presents an optimized, lithographically patternable SU-8/Graphene nanocomposite based piezoresistive strain sensor for localized, high-precision assessment, which marks a significant advancement in the field of soft-MEMS based technologies. The fabrication process involves the photolithography of a SU-8/Graphene nanocomposite with a minimum resolution of 50 μm, resulting in a material with excellent electrical conductivity and mechanical properties. Specifically, a 3% SU-8/Graphene composition was chosen to exceed the percolation threshold, enabling substantial changes in the resistance and facilitating photopatternability. The sensor exhibited exceptional performance characteristics, including a rapid response time of 0.1 s and a wide bending range from 0° to 60°. Notably, it demonstrated a remarkable %ΔR/R of 19.21, indicating its superior sensing capability. Such high sensitivity is crucial for applications that require precise, localized measurements, such as biomedical engineering, sports science, and smart healthcare.","PeriodicalId":16346,"journal":{"name":"Journal of Micromechanics and Microengineering","volume":"12 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lithographically patternable SU-8/Graphene nanocomposite based strain sensors for soft-MEMS applications\",\"authors\":\"Faizan Tariq Beigh, Nadeem Tariq Beigh and Dhiman Mallick\",\"doi\":\"10.1088/1361-6439/ad690e\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an optimized, lithographically patternable SU-8/Graphene nanocomposite based piezoresistive strain sensor for localized, high-precision assessment, which marks a significant advancement in the field of soft-MEMS based technologies. The fabrication process involves the photolithography of a SU-8/Graphene nanocomposite with a minimum resolution of 50 μm, resulting in a material with excellent electrical conductivity and mechanical properties. Specifically, a 3% SU-8/Graphene composition was chosen to exceed the percolation threshold, enabling substantial changes in the resistance and facilitating photopatternability. The sensor exhibited exceptional performance characteristics, including a rapid response time of 0.1 s and a wide bending range from 0° to 60°. Notably, it demonstrated a remarkable %ΔR/R of 19.21, indicating its superior sensing capability. Such high sensitivity is crucial for applications that require precise, localized measurements, such as biomedical engineering, sports science, and smart healthcare.\",\"PeriodicalId\":16346,\"journal\":{\"name\":\"Journal of Micromechanics and Microengineering\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Micromechanics and Microengineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6439/ad690e\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Micromechanics and Microengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1361-6439/ad690e","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了一种优化的、可光刻图案化的 SU-8/Graphene 纳米复合材料压阻应变传感器,用于局部高精度评估,标志着基于软-MEMS 技术领域的重大进展。制造工艺包括对 SU-8/Graphene 纳米复合材料进行光刻,最小分辨率为 50 μm,从而获得了一种具有优异导电性和机械性能的材料。具体来说,选择了 3% 的 SU-8/Graphene 成分,使其超过了渗滤阈值,从而使电阻发生了重大变化,并提高了光可塑性。该传感器表现出卓越的性能特点,包括 0.1 秒的快速响应时间和 0° 至 60° 的宽弯曲范围。值得一提的是,它的 %ΔR/R 值高达 19.21,显示了其卓越的传感能力。如此高的灵敏度对于生物医学工程、体育科学和智能医疗保健等需要精确、局部测量的应用至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Lithographically patternable SU-8/Graphene nanocomposite based strain sensors for soft-MEMS applications
This paper presents an optimized, lithographically patternable SU-8/Graphene nanocomposite based piezoresistive strain sensor for localized, high-precision assessment, which marks a significant advancement in the field of soft-MEMS based technologies. The fabrication process involves the photolithography of a SU-8/Graphene nanocomposite with a minimum resolution of 50 μm, resulting in a material with excellent electrical conductivity and mechanical properties. Specifically, a 3% SU-8/Graphene composition was chosen to exceed the percolation threshold, enabling substantial changes in the resistance and facilitating photopatternability. The sensor exhibited exceptional performance characteristics, including a rapid response time of 0.1 s and a wide bending range from 0° to 60°. Notably, it demonstrated a remarkable %ΔR/R of 19.21, indicating its superior sensing capability. Such high sensitivity is crucial for applications that require precise, localized measurements, such as biomedical engineering, sports science, and smart healthcare.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Micromechanics and Microengineering
Journal of Micromechanics and Microengineering 工程技术-材料科学:综合
CiteScore
4.50
自引率
4.30%
发文量
136
审稿时长
2.8 months
期刊介绍: Journal of Micromechanics and Microengineering (JMM) primarily covers experimental work, however relevant modelling papers are considered where supported by experimental data. The journal is focussed on all aspects of: -nano- and micro- mechanical systems -nano- and micro- electomechanical systems -nano- and micro- electrical and mechatronic systems -nano- and micro- engineering -nano- and micro- scale science Please note that we do not publish materials papers with no obvious application or link to nano- or micro-engineering. Below are some examples of the topics that are included within the scope of the journal: -MEMS and NEMS: Including sensors, optical MEMS/NEMS, RF MEMS/NEMS, etc. -Fabrication techniques and manufacturing: Including micromachining, etching, lithography, deposition, patterning, self-assembly, 3d printing, inkjet printing. -Packaging and Integration technologies. -Materials, testing, and reliability. -Micro- and nano-fluidics: Including optofluidics, acoustofluidics, droplets, microreactors, organ-on-a-chip. -Lab-on-a-chip and micro- and nano-total analysis systems. -Biomedical systems and devices: Including bio MEMS, biosensors, assays, organ-on-a-chip, drug delivery, cells, biointerfaces. -Energy and power: Including power MEMS/NEMS, energy harvesters, actuators, microbatteries. -Electronics: Including flexible electronics, wearable electronics, interface electronics. -Optical systems. -Robotics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信