{"title":"曲面压电超声波微机械换能器频率设计和带宽扩展的高效策略","authors":"Hao Li, Xiaofan Hu, Xingli Xu, Yongquan Ma, Chenyang Yu, Wei Wei and Pengfei Niu","doi":"10.1088/1361-6439/ad690d","DOIUrl":null,"url":null,"abstract":"This article proposes an efficient analytical model and strategy for designing curved piezoelectric micromachined ultrasonic transducers (curved PMUTs). The model is developed based on the Donnell–Mushtari–Vlasov theory and the equivalent single layer method, and validated through finite element analysis. Utilizing the model, we further analyze the diaphragm’s vibration modes and key design parameters. The proposed strategy is centered on 2 design equations, facilitating the rapid design of devices at any frequency through parametric sweeps. Furthermore, to minimize bandwidth loss, we employ the merging of adjacent vibration modes to broaden the bandwidth. Using the proposed method for modes merging, we have effortlessly designed devices with operating frequencies of 2.15 MHz, 6.3 MHz, 10.65 MHz, and 18.75 MHz in water. For comparison, we also designed planar PMUTs and general curved PMUTs operating around 6 MHz and 15 MHz. Compared to planar PMUTs, curved PMUTs show exceptional performance improvements in output pressure and sensitivity. Moreover, the proposed strategy for bandwidth extension results in 1.33× and 1.25× bandwidth improvements around 6 MHz and 15 MHz. The proposed design methodology is anticipated to assist engineers in designing high-performance PMUT arrays more efficiently and systematically.","PeriodicalId":16346,"journal":{"name":"Journal of Micromechanics and Microengineering","volume":"13 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient strategy for frequency design and bandwidth extension of curved piezoelectric ultrasonic micromachined transducers\",\"authors\":\"Hao Li, Xiaofan Hu, Xingli Xu, Yongquan Ma, Chenyang Yu, Wei Wei and Pengfei Niu\",\"doi\":\"10.1088/1361-6439/ad690d\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article proposes an efficient analytical model and strategy for designing curved piezoelectric micromachined ultrasonic transducers (curved PMUTs). The model is developed based on the Donnell–Mushtari–Vlasov theory and the equivalent single layer method, and validated through finite element analysis. Utilizing the model, we further analyze the diaphragm’s vibration modes and key design parameters. The proposed strategy is centered on 2 design equations, facilitating the rapid design of devices at any frequency through parametric sweeps. Furthermore, to minimize bandwidth loss, we employ the merging of adjacent vibration modes to broaden the bandwidth. Using the proposed method for modes merging, we have effortlessly designed devices with operating frequencies of 2.15 MHz, 6.3 MHz, 10.65 MHz, and 18.75 MHz in water. For comparison, we also designed planar PMUTs and general curved PMUTs operating around 6 MHz and 15 MHz. Compared to planar PMUTs, curved PMUTs show exceptional performance improvements in output pressure and sensitivity. Moreover, the proposed strategy for bandwidth extension results in 1.33× and 1.25× bandwidth improvements around 6 MHz and 15 MHz. The proposed design methodology is anticipated to assist engineers in designing high-performance PMUT arrays more efficiently and systematically.\",\"PeriodicalId\":16346,\"journal\":{\"name\":\"Journal of Micromechanics and Microengineering\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Micromechanics and Microengineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6439/ad690d\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Micromechanics and Microengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1361-6439/ad690d","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Efficient strategy for frequency design and bandwidth extension of curved piezoelectric ultrasonic micromachined transducers
This article proposes an efficient analytical model and strategy for designing curved piezoelectric micromachined ultrasonic transducers (curved PMUTs). The model is developed based on the Donnell–Mushtari–Vlasov theory and the equivalent single layer method, and validated through finite element analysis. Utilizing the model, we further analyze the diaphragm’s vibration modes and key design parameters. The proposed strategy is centered on 2 design equations, facilitating the rapid design of devices at any frequency through parametric sweeps. Furthermore, to minimize bandwidth loss, we employ the merging of adjacent vibration modes to broaden the bandwidth. Using the proposed method for modes merging, we have effortlessly designed devices with operating frequencies of 2.15 MHz, 6.3 MHz, 10.65 MHz, and 18.75 MHz in water. For comparison, we also designed planar PMUTs and general curved PMUTs operating around 6 MHz and 15 MHz. Compared to planar PMUTs, curved PMUTs show exceptional performance improvements in output pressure and sensitivity. Moreover, the proposed strategy for bandwidth extension results in 1.33× and 1.25× bandwidth improvements around 6 MHz and 15 MHz. The proposed design methodology is anticipated to assist engineers in designing high-performance PMUT arrays more efficiently and systematically.
期刊介绍:
Journal of Micromechanics and Microengineering (JMM) primarily covers experimental work, however relevant modelling papers are considered where supported by experimental data.
The journal is focussed on all aspects of:
-nano- and micro- mechanical systems
-nano- and micro- electomechanical systems
-nano- and micro- electrical and mechatronic systems
-nano- and micro- engineering
-nano- and micro- scale science
Please note that we do not publish materials papers with no obvious application or link to nano- or micro-engineering.
Below are some examples of the topics that are included within the scope of the journal:
-MEMS and NEMS:
Including sensors, optical MEMS/NEMS, RF MEMS/NEMS, etc.
-Fabrication techniques and manufacturing:
Including micromachining, etching, lithography, deposition, patterning, self-assembly, 3d printing, inkjet printing.
-Packaging and Integration technologies.
-Materials, testing, and reliability.
-Micro- and nano-fluidics:
Including optofluidics, acoustofluidics, droplets, microreactors, organ-on-a-chip.
-Lab-on-a-chip and micro- and nano-total analysis systems.
-Biomedical systems and devices:
Including bio MEMS, biosensors, assays, organ-on-a-chip, drug delivery, cells, biointerfaces.
-Energy and power:
Including power MEMS/NEMS, energy harvesters, actuators, microbatteries.
-Electronics:
Including flexible electronics, wearable electronics, interface electronics.
-Optical systems.
-Robotics.