{"title":"用于向旋转轴传感器无线传输电力的 FPC 接收线圈","authors":"YanLing Guo, ChunPeng Wang, ZhiPeng Li","doi":"10.1007/s43236-024-00884-4","DOIUrl":null,"url":null,"abstract":"<p>In response to the issue of providing a wireless power supply to the magnetic focusing rotor torque and torsion sensors on the rotating shaft systems, loose-coupled transformers (LCTs) are difficult to disassemble and install due to their large size. In addition, their large mass has a significant impact on the dynamic balance of the shaft system. Consequently, in this paper, a structural design of an flexible printed circuit (FPC)-stacked receiving coil is proposed, with its mathematical model, physical model, and simulation model established. The optimal structure is obtained by simulating the coil-induced voltage under different structural parameters through COMSOL electromagnetic simulation. Through modal simulation analysis of the rotor in ANSYS, it is found that the FPC-stacked receiving coil has less impact on the dynamic balance of the rotating shaft system.</p>","PeriodicalId":50081,"journal":{"name":"Journal of Power Electronics","volume":"12 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"FPC receiving coil for wireless power transmission to rotational axis sensors\",\"authors\":\"YanLing Guo, ChunPeng Wang, ZhiPeng Li\",\"doi\":\"10.1007/s43236-024-00884-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In response to the issue of providing a wireless power supply to the magnetic focusing rotor torque and torsion sensors on the rotating shaft systems, loose-coupled transformers (LCTs) are difficult to disassemble and install due to their large size. In addition, their large mass has a significant impact on the dynamic balance of the shaft system. Consequently, in this paper, a structural design of an flexible printed circuit (FPC)-stacked receiving coil is proposed, with its mathematical model, physical model, and simulation model established. The optimal structure is obtained by simulating the coil-induced voltage under different structural parameters through COMSOL electromagnetic simulation. Through modal simulation analysis of the rotor in ANSYS, it is found that the FPC-stacked receiving coil has less impact on the dynamic balance of the rotating shaft system.</p>\",\"PeriodicalId\":50081,\"journal\":{\"name\":\"Journal of Power Electronics\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Power Electronics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s43236-024-00884-4\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Power Electronics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s43236-024-00884-4","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
FPC receiving coil for wireless power transmission to rotational axis sensors
In response to the issue of providing a wireless power supply to the magnetic focusing rotor torque and torsion sensors on the rotating shaft systems, loose-coupled transformers (LCTs) are difficult to disassemble and install due to their large size. In addition, their large mass has a significant impact on the dynamic balance of the shaft system. Consequently, in this paper, a structural design of an flexible printed circuit (FPC)-stacked receiving coil is proposed, with its mathematical model, physical model, and simulation model established. The optimal structure is obtained by simulating the coil-induced voltage under different structural parameters through COMSOL electromagnetic simulation. Through modal simulation analysis of the rotor in ANSYS, it is found that the FPC-stacked receiving coil has less impact on the dynamic balance of the rotating shaft system.
期刊介绍:
The scope of Journal of Power Electronics includes all issues in the field of Power Electronics. Included are techniques for power converters, adjustable speed drives, renewable energy, power quality and utility applications, analysis, modeling and control, power devices and components, power electronics education, and other application.