由 FBM 驱动的 McKean-Vlasov SDEs 的平均原理

IF 1.9 3区 数学 Q1 MATHEMATICS
Tongqi Zhang, Yong Xu, Lifang Feng, Bin Pei
{"title":"由 FBM 驱动的 McKean-Vlasov SDEs 的平均原理","authors":"Tongqi Zhang, Yong Xu, Lifang Feng, Bin Pei","doi":"10.1007/s12346-024-01099-5","DOIUrl":null,"url":null,"abstract":"<p>This paper considers a class of mixed slow-fast McKean–Vlasov stochastic differential equations that contain the fractional Brownian motion with Hurst parameter <span>\\(H &gt; 1/2\\)</span> and the standard Brownian motion. Firstly, we prove an existence and uniqueness theorem for the mixed coupled system. Secondly, under suitable assumptions on the coefficients, using the approach of Khasminskii’s time discretization, we prove that the slow component strongly converges to the solution of the corresponding averaged equation in the mean square sense.</p>","PeriodicalId":48886,"journal":{"name":"Qualitative Theory of Dynamical Systems","volume":"39 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Averaging Principle for McKean-Vlasov SDEs Driven by FBMs\",\"authors\":\"Tongqi Zhang, Yong Xu, Lifang Feng, Bin Pei\",\"doi\":\"10.1007/s12346-024-01099-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper considers a class of mixed slow-fast McKean–Vlasov stochastic differential equations that contain the fractional Brownian motion with Hurst parameter <span>\\\\(H &gt; 1/2\\\\)</span> and the standard Brownian motion. Firstly, we prove an existence and uniqueness theorem for the mixed coupled system. Secondly, under suitable assumptions on the coefficients, using the approach of Khasminskii’s time discretization, we prove that the slow component strongly converges to the solution of the corresponding averaged equation in the mean square sense.</p>\",\"PeriodicalId\":48886,\"journal\":{\"name\":\"Qualitative Theory of Dynamical Systems\",\"volume\":\"39 1\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Qualitative Theory of Dynamical Systems\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s12346-024-01099-5\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Qualitative Theory of Dynamical Systems","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s12346-024-01099-5","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了一类混合慢-快麦金-弗拉索夫随机微分方程,该方程包含具有赫斯特参数(H >1/2\)的分数布朗运动和标准布朗运动。首先,我们证明了混合耦合系统的存在性和唯一性定理。其次,在系数的适当假设下,利用哈明斯基时间离散化方法,我们证明慢速分量在均方意义上强烈收敛于相应平均方程的解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Averaging Principle for McKean-Vlasov SDEs Driven by FBMs

This paper considers a class of mixed slow-fast McKean–Vlasov stochastic differential equations that contain the fractional Brownian motion with Hurst parameter \(H > 1/2\) and the standard Brownian motion. Firstly, we prove an existence and uniqueness theorem for the mixed coupled system. Secondly, under suitable assumptions on the coefficients, using the approach of Khasminskii’s time discretization, we prove that the slow component strongly converges to the solution of the corresponding averaged equation in the mean square sense.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Qualitative Theory of Dynamical Systems
Qualitative Theory of Dynamical Systems MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.50
自引率
14.30%
发文量
130
期刊介绍: Qualitative Theory of Dynamical Systems (QTDS) publishes high-quality peer-reviewed research articles on the theory and applications of discrete and continuous dynamical systems. The journal addresses mathematicians as well as engineers, physicists, and other scientists who use dynamical systems as valuable research tools. The journal is not interested in numerical results, except if these illustrate theoretical results previously proved.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信