$\mathbb{R}^4$ 中与超平面对称的封闭拉格朗日自收缩器

IF 0.7 4区 数学 Q2 MATHEMATICS
Jaehoon Lee
{"title":"$\\mathbb{R}^4$ 中与超平面对称的封闭拉格朗日自收缩器","authors":"Jaehoon Lee","doi":"10.4310/cag.2023.v31.n8.a3","DOIUrl":null,"url":null,"abstract":"In this paper, we prove that the closed Lagrangian self-shrinkers in $\\mathbb{R}^4$ which are symmetric with respect to a hyperplane are given by the products of Abresch–Langer curves. As a corollary, we obtain a new geometric characterization of the Clifford torus as the unique embedded closed Lagrangian self-shrinker symmetric with respect to a hyperplane in $\\mathbb{R}^4$.","PeriodicalId":50662,"journal":{"name":"Communications in Analysis and Geometry","volume":"45 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Closed Lagrangian self-shrinkers in $\\\\mathbb{R}^4$ symmetric with respect to a hyperplane\",\"authors\":\"Jaehoon Lee\",\"doi\":\"10.4310/cag.2023.v31.n8.a3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we prove that the closed Lagrangian self-shrinkers in $\\\\mathbb{R}^4$ which are symmetric with respect to a hyperplane are given by the products of Abresch–Langer curves. As a corollary, we obtain a new geometric characterization of the Clifford torus as the unique embedded closed Lagrangian self-shrinker symmetric with respect to a hyperplane in $\\\\mathbb{R}^4$.\",\"PeriodicalId\":50662,\"journal\":{\"name\":\"Communications in Analysis and Geometry\",\"volume\":\"45 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-08-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Analysis and Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/cag.2023.v31.n8.a3\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Analysis and Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/cag.2023.v31.n8.a3","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们证明了 $\mathbb{R}^4$ 中相对于超平面对称的封闭拉格朗日自收缩物是由阿布雷斯-朗格曲线的乘积给出的。作为推论,我们得到了克利福德环作为 $\mathbb{R}^4$ 中关于超平面对称的唯一内嵌封闭拉格朗日自收缩器的新几何特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Closed Lagrangian self-shrinkers in $\mathbb{R}^4$ symmetric with respect to a hyperplane
In this paper, we prove that the closed Lagrangian self-shrinkers in $\mathbb{R}^4$ which are symmetric with respect to a hyperplane are given by the products of Abresch–Langer curves. As a corollary, we obtain a new geometric characterization of the Clifford torus as the unique embedded closed Lagrangian self-shrinker symmetric with respect to a hyperplane in $\mathbb{R}^4$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
4
审稿时长
>12 weeks
期刊介绍: Publishes high-quality papers on subjects related to classical analysis, partial differential equations, algebraic geometry, differential geometry, and topology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信