通过经验过程对 ARMA 创新分布进行统计推断和多步前瞻预测

IF 0.8 4区 数学 Q3 STATISTICS & PROBABILITY
Chen Zhong
{"title":"通过经验过程对 ARMA 创新分布进行统计推断和多步前瞻预测","authors":"Chen Zhong","doi":"10.1080/10485252.2024.2384608","DOIUrl":null,"url":null,"abstract":"The kernel distribution estimator (KDE) is proposed based on residuals of the innovation distribution in the autoregressive moving-average (ARMA) time series. The deviation between KDE and the inno...","PeriodicalId":50112,"journal":{"name":"Journal of Nonparametric Statistics","volume":"374 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Statistical inference for innovation distribution in ARMA and multi-step-ahead prediction via empirical process\",\"authors\":\"Chen Zhong\",\"doi\":\"10.1080/10485252.2024.2384608\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The kernel distribution estimator (KDE) is proposed based on residuals of the innovation distribution in the autoregressive moving-average (ARMA) time series. The deviation between KDE and the inno...\",\"PeriodicalId\":50112,\"journal\":{\"name\":\"Journal of Nonparametric Statistics\",\"volume\":\"374 1\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nonparametric Statistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1080/10485252.2024.2384608\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nonparametric Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/10485252.2024.2384608","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

基于自回归移动平均(ARMA)时间序列中创新分布的残差,提出了核分布估计器(KDE)。KDE 与创新分布之间的偏差是由...
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Statistical inference for innovation distribution in ARMA and multi-step-ahead prediction via empirical process
The kernel distribution estimator (KDE) is proposed based on residuals of the innovation distribution in the autoregressive moving-average (ARMA) time series. The deviation between KDE and the inno...
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Nonparametric Statistics
Journal of Nonparametric Statistics 数学-统计学与概率论
CiteScore
1.50
自引率
8.30%
发文量
42
审稿时长
6-12 weeks
期刊介绍: Journal of Nonparametric Statistics provides a medium for the publication of research and survey work in nonparametric statistics and related areas. The scope includes, but is not limited to the following topics: Nonparametric modeling, Nonparametric function estimation, Rank and other robust and distribution-free procedures, Resampling methods, Lack-of-fit testing, Multivariate analysis, Inference with high-dimensional data, Dimension reduction and variable selection, Methods for errors in variables, missing, censored, and other incomplete data structures, Inference of stochastic processes, Sample surveys, Time series analysis, Longitudinal and functional data analysis, Nonparametric Bayes methods and decision procedures, Semiparametric models and procedures, Statistical methods for imaging and tomography, Statistical inverse problems, Financial statistics and econometrics, Bioinformatics and comparative genomics, Statistical algorithms and machine learning. Both the theory and applications of nonparametric statistics are covered in the journal. Research applying nonparametric methods to medicine, engineering, technology, science and humanities is welcomed, provided the novelty and quality level are of the highest order. Authors are encouraged to submit supplementary technical arguments, computer code, data analysed in the paper or any additional information for online publication along with the published paper.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信