{"title":"一种基于集合重采样的转移 AdaBoost 算法,用于具有类不平衡的小样本信用分类","authors":"Xiaoming Zhang, Lean Yu, Hang Yin","doi":"10.1007/s10614-024-10690-6","DOIUrl":null,"url":null,"abstract":"<p>It is prone to overfitting and poor generalization ability for imbalanced small sample datasets in modeling. Auxiliary data is an effective solution. However, there may be data distribution differences between auxiliary data and small sample data, and the presence of noise samples affects the prediction performance. To address this issue, we propose an ensemble resampling based transfer AdaBoost (TrAdaBoost) algorithm for imbalanced small sample credit classification. The proposed algorithm framework has two stages: ensemble resampling dataset generation and weight adaptive transfer AdaBoost (WATrA) model prediction. In the first stage, neighborhood-based resampling technique is proposed to filter source data and reduce noise samples, followed by bagging resampling to balance the filtered source data. In the second stage, a weight adaptive TrAdaBoost model is utilized to address small sample with class imbalance issues and improve the effectiveness of the proposed method. We validate the proposed algorithm on two small sample credit datasets with class imbalance, and observe significant improvements in performance compared to traditional supervised machine learning methods and resampling methods based on the main evaluation criteria.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Ensemble Resampling Based Transfer AdaBoost Algorithm for Small Sample Credit Classification with Class Imbalance\",\"authors\":\"Xiaoming Zhang, Lean Yu, Hang Yin\",\"doi\":\"10.1007/s10614-024-10690-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>It is prone to overfitting and poor generalization ability for imbalanced small sample datasets in modeling. Auxiliary data is an effective solution. However, there may be data distribution differences between auxiliary data and small sample data, and the presence of noise samples affects the prediction performance. To address this issue, we propose an ensemble resampling based transfer AdaBoost (TrAdaBoost) algorithm for imbalanced small sample credit classification. The proposed algorithm framework has two stages: ensemble resampling dataset generation and weight adaptive transfer AdaBoost (WATrA) model prediction. In the first stage, neighborhood-based resampling technique is proposed to filter source data and reduce noise samples, followed by bagging resampling to balance the filtered source data. In the second stage, a weight adaptive TrAdaBoost model is utilized to address small sample with class imbalance issues and improve the effectiveness of the proposed method. We validate the proposed algorithm on two small sample credit datasets with class imbalance, and observe significant improvements in performance compared to traditional supervised machine learning methods and resampling methods based on the main evaluation criteria.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-08-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://doi.org/10.1007/s10614-024-10690-6\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1007/s10614-024-10690-6","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
An Ensemble Resampling Based Transfer AdaBoost Algorithm for Small Sample Credit Classification with Class Imbalance
It is prone to overfitting and poor generalization ability for imbalanced small sample datasets in modeling. Auxiliary data is an effective solution. However, there may be data distribution differences between auxiliary data and small sample data, and the presence of noise samples affects the prediction performance. To address this issue, we propose an ensemble resampling based transfer AdaBoost (TrAdaBoost) algorithm for imbalanced small sample credit classification. The proposed algorithm framework has two stages: ensemble resampling dataset generation and weight adaptive transfer AdaBoost (WATrA) model prediction. In the first stage, neighborhood-based resampling technique is proposed to filter source data and reduce noise samples, followed by bagging resampling to balance the filtered source data. In the second stage, a weight adaptive TrAdaBoost model is utilized to address small sample with class imbalance issues and improve the effectiveness of the proposed method. We validate the proposed algorithm on two small sample credit datasets with class imbalance, and observe significant improvements in performance compared to traditional supervised machine learning methods and resampling methods based on the main evaluation criteria.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.