{"title":"已实现波动率预测的动态性:跨参数变化评估 GARCH 模型和深度学习算法","authors":"Omer Burak Akgun, Emrah Gulay","doi":"10.1007/s10614-024-10694-2","DOIUrl":null,"url":null,"abstract":"<p>The modeling and forecasting of return volatility for the top three cryptocurrencies, which are identified by the highest trading volumes, is the main focus of the study. Eleven different GARCH-type models were analyzed using a comprehensive methodology in six different distributions, and deep learning algorithms were used to rigorously assess each model’s forecasting performance. Additionally, the study investigates the impact of selecting dynamic parameters for the forecasting performance of these models. This study investigates if there are any appreciable differences in forecast outcomes between the two different realized variance calculations and variations in training size. Further investigation focuses on how the use of expanding and rolling windows affects the optimal window type for forecasting. Finally, the importance of choosing different error measurements is emphasized in the framework of comparing forecasting performances. Our results indicate that in GARCH-type models, 5-minute realized variance shows the best forecasting performance, while in deep learning models, median realized variance (MedRV) has the best performance. Moreover, it has been determined that an increase in the training/test ratio and the selection of the rolling window approach both play important roles in achieving better forecast accuracy. Finally, our results show that deep learning models outperform GARCH-type models in volatility forecasts.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamics in Realized Volatility Forecasting: Evaluating GARCH Models and Deep Learning Algorithms Across Parameter Variations\",\"authors\":\"Omer Burak Akgun, Emrah Gulay\",\"doi\":\"10.1007/s10614-024-10694-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The modeling and forecasting of return volatility for the top three cryptocurrencies, which are identified by the highest trading volumes, is the main focus of the study. Eleven different GARCH-type models were analyzed using a comprehensive methodology in six different distributions, and deep learning algorithms were used to rigorously assess each model’s forecasting performance. Additionally, the study investigates the impact of selecting dynamic parameters for the forecasting performance of these models. This study investigates if there are any appreciable differences in forecast outcomes between the two different realized variance calculations and variations in training size. Further investigation focuses on how the use of expanding and rolling windows affects the optimal window type for forecasting. Finally, the importance of choosing different error measurements is emphasized in the framework of comparing forecasting performances. Our results indicate that in GARCH-type models, 5-minute realized variance shows the best forecasting performance, while in deep learning models, median realized variance (MedRV) has the best performance. Moreover, it has been determined that an increase in the training/test ratio and the selection of the rolling window approach both play important roles in achieving better forecast accuracy. Finally, our results show that deep learning models outperform GARCH-type models in volatility forecasts.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://doi.org/10.1007/s10614-024-10694-2\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1007/s10614-024-10694-2","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Dynamics in Realized Volatility Forecasting: Evaluating GARCH Models and Deep Learning Algorithms Across Parameter Variations
The modeling and forecasting of return volatility for the top three cryptocurrencies, which are identified by the highest trading volumes, is the main focus of the study. Eleven different GARCH-type models were analyzed using a comprehensive methodology in six different distributions, and deep learning algorithms were used to rigorously assess each model’s forecasting performance. Additionally, the study investigates the impact of selecting dynamic parameters for the forecasting performance of these models. This study investigates if there are any appreciable differences in forecast outcomes between the two different realized variance calculations and variations in training size. Further investigation focuses on how the use of expanding and rolling windows affects the optimal window type for forecasting. Finally, the importance of choosing different error measurements is emphasized in the framework of comparing forecasting performances. Our results indicate that in GARCH-type models, 5-minute realized variance shows the best forecasting performance, while in deep learning models, median realized variance (MedRV) has the best performance. Moreover, it has been determined that an increase in the training/test ratio and the selection of the rolling window approach both play important roles in achieving better forecast accuracy. Finally, our results show that deep learning models outperform GARCH-type models in volatility forecasts.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.