利用 KKM 定理

Daniel McGinnis, Shira Zerbib
{"title":"利用 KKM 定理","authors":"Daniel McGinnis, Shira Zerbib","doi":"arxiv-2408.03921","DOIUrl":null,"url":null,"abstract":"The KKM theorem, due to Knaster, Kuratowski, and Mazurkiewicz in 1929, is a\nfundamental result in fixed-point theory, which has seen numerous extensions\nand applications. In this paper we survey old and recent generalizations of the\nKKM theorem and their applications in the areas of piercing numbers, mass\npartition, fair division, and matching theory. We also give a few new results\nutilizing KKM-type theorems, and discuss related open problems.","PeriodicalId":501314,"journal":{"name":"arXiv - MATH - General Topology","volume":"47 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Using the KKM theorem\",\"authors\":\"Daniel McGinnis, Shira Zerbib\",\"doi\":\"arxiv-2408.03921\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The KKM theorem, due to Knaster, Kuratowski, and Mazurkiewicz in 1929, is a\\nfundamental result in fixed-point theory, which has seen numerous extensions\\nand applications. In this paper we survey old and recent generalizations of the\\nKKM theorem and their applications in the areas of piercing numbers, mass\\npartition, fair division, and matching theory. We also give a few new results\\nutilizing KKM-type theorems, and discuss related open problems.\",\"PeriodicalId\":501314,\"journal\":{\"name\":\"arXiv - MATH - General Topology\",\"volume\":\"47 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - General Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.03921\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - General Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.03921","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

KKM 定理是 Knaster、Kuratowski 和 Mazurkiewicz 于 1929 年提出的,它是定点理论中的一个基本结果,并得到了无数的扩展和应用。在本文中,我们考察了 KKM 定理的新旧概括及其在穿孔数、质量分割、公平除法和匹配理论等领域的应用。我们还给出了一些利用 KKM 型定理的新结果,并讨论了相关的未决问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Using the KKM theorem
The KKM theorem, due to Knaster, Kuratowski, and Mazurkiewicz in 1929, is a fundamental result in fixed-point theory, which has seen numerous extensions and applications. In this paper we survey old and recent generalizations of the KKM theorem and their applications in the areas of piercing numbers, mass partition, fair division, and matching theory. We also give a few new results utilizing KKM-type theorems, and discuss related open problems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信