Dongguen Kim, Heejin Kim, Yejin Kim, Minwoo Chae, Young Myoung Ko, Young-Mok Bae, Hyungsub Sim, Young Chan Oh, Keum Hwan Noh
{"title":"使用统计模型优化半导体制造工艺中的封装","authors":"Dongguen Kim, Heejin Kim, Yejin Kim, Minwoo Chae, Young Myoung Ko, Young-Mok Bae, Hyungsub Sim, Young Chan Oh, Keum Hwan Noh","doi":"10.1007/s42952-024-00284-1","DOIUrl":null,"url":null,"abstract":"<p>The importance of the back-end process in semiconductor manufacturing has recently received significant attention from global manufacturers. The analysis of manufacturing data often provides crucial insights into problems inherent in the manufacturing processes. An important goal of the back-end process is to improve the yield of final products, called packages. A simple way to achieve this goal is to characterize low-quality wafers based on the analysis of manufacturing data and discard them before proceeding to the packaging step. Alternatively, this paper proposes a novel packaging method that significantly improves the package yield using statistical models scoring the quality of dies. We prove that the proposed packaging method is optimal and conduct thorough numerical experiments, showing its superiority.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Using statistical models for optimal packaging in semiconductor manufacturing processes\",\"authors\":\"Dongguen Kim, Heejin Kim, Yejin Kim, Minwoo Chae, Young Myoung Ko, Young-Mok Bae, Hyungsub Sim, Young Chan Oh, Keum Hwan Noh\",\"doi\":\"10.1007/s42952-024-00284-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The importance of the back-end process in semiconductor manufacturing has recently received significant attention from global manufacturers. The analysis of manufacturing data often provides crucial insights into problems inherent in the manufacturing processes. An important goal of the back-end process is to improve the yield of final products, called packages. A simple way to achieve this goal is to characterize low-quality wafers based on the analysis of manufacturing data and discard them before proceeding to the packaging step. Alternatively, this paper proposes a novel packaging method that significantly improves the package yield using statistical models scoring the quality of dies. We prove that the proposed packaging method is optimal and conduct thorough numerical experiments, showing its superiority.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s42952-024-00284-1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s42952-024-00284-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Using statistical models for optimal packaging in semiconductor manufacturing processes
The importance of the back-end process in semiconductor manufacturing has recently received significant attention from global manufacturers. The analysis of manufacturing data often provides crucial insights into problems inherent in the manufacturing processes. An important goal of the back-end process is to improve the yield of final products, called packages. A simple way to achieve this goal is to characterize low-quality wafers based on the analysis of manufacturing data and discard them before proceeding to the packaging step. Alternatively, this paper proposes a novel packaging method that significantly improves the package yield using statistical models scoring the quality of dies. We prove that the proposed packaging method is optimal and conduct thorough numerical experiments, showing its superiority.