Dongkeun Lee, Jinwoo Kim, KangSeok Lee, TaeSoo Kim
{"title":"奥氏体不锈钢双剪切四螺栓连接行为的实验和数值研究","authors":"Dongkeun Lee, Jinwoo Kim, KangSeok Lee, TaeSoo Kim","doi":"10.1007/s13296-024-00878-9","DOIUrl":null,"url":null,"abstract":"<div><p>It is well known that stainless steel has many advantages such as superb durability, ductility, and corrosion resistance. Thus, the use of stainless steel for various structural members in construction fields is recently increasing. Structural behaviors of bolted and welded connections, compressive and flexural members, beam-column joints, seismic devices etc. have been conducted experimentally and numerically and thus new design methods have been proposed. Hence, in this study, both experiment and finite element analysis were conducted to assess the block shear failure behaviors of double-shear four-bolted connections made of austenitic stainless steel (STS304) with thinner plate and larger end distance, which are beyond the range of previous literature. The main parameter was end distance and edge distance. Block shear strengths by parametric analysis and test results study were compared with design predictions. It is found that current design equations tended to significantly underestimated test and analysis results. Therefore, modified block shear strength equation was recommended for austenitic stainless steel double shear bolted connection treated in this study.</p></div>","PeriodicalId":596,"journal":{"name":"International Journal of Steel Structures","volume":"24 5","pages":"1165 - 1177"},"PeriodicalIF":1.1000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental and Numerical Study on Behaviors of Double-shear Four-Bolted Connection with Austenitic Stainless Steel\",\"authors\":\"Dongkeun Lee, Jinwoo Kim, KangSeok Lee, TaeSoo Kim\",\"doi\":\"10.1007/s13296-024-00878-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>It is well known that stainless steel has many advantages such as superb durability, ductility, and corrosion resistance. Thus, the use of stainless steel for various structural members in construction fields is recently increasing. Structural behaviors of bolted and welded connections, compressive and flexural members, beam-column joints, seismic devices etc. have been conducted experimentally and numerically and thus new design methods have been proposed. Hence, in this study, both experiment and finite element analysis were conducted to assess the block shear failure behaviors of double-shear four-bolted connections made of austenitic stainless steel (STS304) with thinner plate and larger end distance, which are beyond the range of previous literature. The main parameter was end distance and edge distance. Block shear strengths by parametric analysis and test results study were compared with design predictions. It is found that current design equations tended to significantly underestimated test and analysis results. Therefore, modified block shear strength equation was recommended for austenitic stainless steel double shear bolted connection treated in this study.</p></div>\",\"PeriodicalId\":596,\"journal\":{\"name\":\"International Journal of Steel Structures\",\"volume\":\"24 5\",\"pages\":\"1165 - 1177\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Steel Structures\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s13296-024-00878-9\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Steel Structures","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s13296-024-00878-9","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
Experimental and Numerical Study on Behaviors of Double-shear Four-Bolted Connection with Austenitic Stainless Steel
It is well known that stainless steel has many advantages such as superb durability, ductility, and corrosion resistance. Thus, the use of stainless steel for various structural members in construction fields is recently increasing. Structural behaviors of bolted and welded connections, compressive and flexural members, beam-column joints, seismic devices etc. have been conducted experimentally and numerically and thus new design methods have been proposed. Hence, in this study, both experiment and finite element analysis were conducted to assess the block shear failure behaviors of double-shear four-bolted connections made of austenitic stainless steel (STS304) with thinner plate and larger end distance, which are beyond the range of previous literature. The main parameter was end distance and edge distance. Block shear strengths by parametric analysis and test results study were compared with design predictions. It is found that current design equations tended to significantly underestimated test and analysis results. Therefore, modified block shear strength equation was recommended for austenitic stainless steel double shear bolted connection treated in this study.
期刊介绍:
The International Journal of Steel Structures provides an international forum for a broad classification of technical papers in steel structural research and its applications. The journal aims to reach not only researchers, but also practicing engineers. Coverage encompasses such topics as stability, fatigue, non-linear behavior, dynamics, reliability, fire, design codes, computer-aided analysis and design, optimization, expert systems, connections, fabrications, maintenance, bridges, off-shore structures, jetties, stadiums, transmission towers, marine vessels, storage tanks, pressure vessels, aerospace, and pipelines and more.