{"title":"基于支柱的晶格超材料的深度学习、去卷积神经网络反设计","authors":"Francisco Dos Reis, Nikolaos Karathanasopoulos","doi":"10.1016/j.commatsci.2024.113258","DOIUrl":null,"url":null,"abstract":"Machine learning techniques have furnished a new paradigm in the modeling and design of advanced materials, both in the forward prediction of their effective performance and in the inverse identification of designs that meet specific response targets. While numerous architected media with a diverse range of effective mechanical properties have been investigated thus far, the inverse design of beam-based metamaterials with non-uniform inner architectures that emerge as a consequence of evolutionary optimization processes remains a significant challenge. This contribution elaborates a deep learning, deconvolutional neural network based (DCNN) framework which, when combined with a comprehensive parameterization of discrete lattice spaces, enables the inverse engineering of stochastic lattice metamaterials that cover wide mechanical performance spaces. Auxetic, shear soft and stiff, nearly isotropic and highly anisotropic beam-based metamaterial designs are inversely identified, upon a direct request of their desired mechanical performance, without the need of a latent, condensed space representation. The DCNN model is capable of robustly generating beam-based lattice designs with target mechanical attributes that extend beyond those employed in the initial training domain.","PeriodicalId":10650,"journal":{"name":"Computational Materials Science","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep learning, deconvolutional neural network inverse design of strut-based lattice metamaterials\",\"authors\":\"Francisco Dos Reis, Nikolaos Karathanasopoulos\",\"doi\":\"10.1016/j.commatsci.2024.113258\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Machine learning techniques have furnished a new paradigm in the modeling and design of advanced materials, both in the forward prediction of their effective performance and in the inverse identification of designs that meet specific response targets. While numerous architected media with a diverse range of effective mechanical properties have been investigated thus far, the inverse design of beam-based metamaterials with non-uniform inner architectures that emerge as a consequence of evolutionary optimization processes remains a significant challenge. This contribution elaborates a deep learning, deconvolutional neural network based (DCNN) framework which, when combined with a comprehensive parameterization of discrete lattice spaces, enables the inverse engineering of stochastic lattice metamaterials that cover wide mechanical performance spaces. Auxetic, shear soft and stiff, nearly isotropic and highly anisotropic beam-based metamaterial designs are inversely identified, upon a direct request of their desired mechanical performance, without the need of a latent, condensed space representation. The DCNN model is capable of robustly generating beam-based lattice designs with target mechanical attributes that extend beyond those employed in the initial training domain.\",\"PeriodicalId\":10650,\"journal\":{\"name\":\"Computational Materials Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Materials Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.commatsci.2024.113258\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Materials Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.commatsci.2024.113258","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Deep learning, deconvolutional neural network inverse design of strut-based lattice metamaterials
Machine learning techniques have furnished a new paradigm in the modeling and design of advanced materials, both in the forward prediction of their effective performance and in the inverse identification of designs that meet specific response targets. While numerous architected media with a diverse range of effective mechanical properties have been investigated thus far, the inverse design of beam-based metamaterials with non-uniform inner architectures that emerge as a consequence of evolutionary optimization processes remains a significant challenge. This contribution elaborates a deep learning, deconvolutional neural network based (DCNN) framework which, when combined with a comprehensive parameterization of discrete lattice spaces, enables the inverse engineering of stochastic lattice metamaterials that cover wide mechanical performance spaces. Auxetic, shear soft and stiff, nearly isotropic and highly anisotropic beam-based metamaterial designs are inversely identified, upon a direct request of their desired mechanical performance, without the need of a latent, condensed space representation. The DCNN model is capable of robustly generating beam-based lattice designs with target mechanical attributes that extend beyond those employed in the initial training domain.
期刊介绍:
The goal of Computational Materials Science is to report on results that provide new or unique insights into, or significantly expand our understanding of, the properties of materials or phenomena associated with their design, synthesis, processing, characterization, and utilization. To be relevant to the journal, the results should be applied or applicable to specific material systems that are discussed within the submission.