{"title":"用选择性 Rips 复合物检测大地圆的持久同源性","authors":"Žiga Virk","doi":"10.1007/s00009-024-02706-0","DOIUrl":null,"url":null,"abstract":"<p>This paper introduces a method to detect each geometrically significant loop that is a geodesic circle (an isometric embedding of <span>\\(S^1\\)</span>) and a bottleneck loop (meaning that each of its perturbations increases the length) in a geodesic space using persistent homology. Under fairly mild conditions, we show that such a loop either terminates a 1-dimensional homology class or gives rise to a 2-dimensional homology class in persistent homology. The main tool in this detection technique are selective Rips complexes, new custom made complexes that function as an appropriate combinatorial lens for persistent homology to detect the above mentioned loops. The main argument is based on a new concept of a local winding number, which turns out to be an invariant of certain homology classes.</p>","PeriodicalId":49829,"journal":{"name":"Mediterranean Journal of Mathematics","volume":"58 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Persistent Homology with Selective Rips Complexes Detects Geodesic Circles\",\"authors\":\"Žiga Virk\",\"doi\":\"10.1007/s00009-024-02706-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper introduces a method to detect each geometrically significant loop that is a geodesic circle (an isometric embedding of <span>\\\\(S^1\\\\)</span>) and a bottleneck loop (meaning that each of its perturbations increases the length) in a geodesic space using persistent homology. Under fairly mild conditions, we show that such a loop either terminates a 1-dimensional homology class or gives rise to a 2-dimensional homology class in persistent homology. The main tool in this detection technique are selective Rips complexes, new custom made complexes that function as an appropriate combinatorial lens for persistent homology to detect the above mentioned loops. The main argument is based on a new concept of a local winding number, which turns out to be an invariant of certain homology classes.</p>\",\"PeriodicalId\":49829,\"journal\":{\"name\":\"Mediterranean Journal of Mathematics\",\"volume\":\"58 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mediterranean Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00009-024-02706-0\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mediterranean Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00009-024-02706-0","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Persistent Homology with Selective Rips Complexes Detects Geodesic Circles
This paper introduces a method to detect each geometrically significant loop that is a geodesic circle (an isometric embedding of \(S^1\)) and a bottleneck loop (meaning that each of its perturbations increases the length) in a geodesic space using persistent homology. Under fairly mild conditions, we show that such a loop either terminates a 1-dimensional homology class or gives rise to a 2-dimensional homology class in persistent homology. The main tool in this detection technique are selective Rips complexes, new custom made complexes that function as an appropriate combinatorial lens for persistent homology to detect the above mentioned loops. The main argument is based on a new concept of a local winding number, which turns out to be an invariant of certain homology classes.
期刊介绍:
The Mediterranean Journal of Mathematics (MedJM) is a publication issued by the Department of Mathematics of the University of Bari. The new journal replaces the Conferenze del Seminario di Matematica dell’Università di Bari which has been in publication from 1954 until 2003.
The Mediterranean Journal of Mathematics aims to publish original and high-quality peer-reviewed papers containing significant results across all fields of mathematics. The submitted papers should be of medium length (not to exceed 20 printed pages), well-written and appealing to a broad mathematical audience.
In particular, the Mediterranean Journal of Mathematics intends to offer mathematicians from the Mediterranean countries a particular opportunity to circulate the results of their researches in a common journal. Through such a new cultural and scientific stimulus the journal aims to contribute to further integration amongst Mediterranean universities, though it is open to contribution from mathematicians across the world.