两个特殊非线性方程的高效列导数算法

IF 1.9 4区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
Pramana Pub Date : 2024-08-12 DOI:10.1007/s12043-024-02806-2
Zhi-Hang Gu, Wen-An Jiang, Li-Qun Chen
{"title":"两个特殊非线性方程的高效列导数算法","authors":"Zhi-Hang Gu,&nbsp;Wen-An Jiang,&nbsp;Li-Qun Chen","doi":"10.1007/s12043-024-02806-2","DOIUrl":null,"url":null,"abstract":"<div><p>This paper explores the effectiveness of the Lie derivative discretisation scheme applied to two particular types of nonlinear dynamical equations, both of which have the characteristic of time variables in the denominator position. The discrete structure of non-autonomous systems is established. In particular, we exclude time variables as state variables to prevent non-autonomous systems from becoming autonomous systems. Using this method, we compute the numerical solution of the system above and compare it with the precise solution and the numerical findings of Runge–Kutta, demonstrating the broad applicability of the Lie derivative numerical algorithm. Finally, we determine the CPU consumption time of two numerical algorithms, thus providing evidence of the high efficiency of the Lie derivative numerical algorithm.\n</p></div>","PeriodicalId":743,"journal":{"name":"Pramana","volume":"98 3","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient Lie derivative algorithm for two special nonlinear equations\",\"authors\":\"Zhi-Hang Gu,&nbsp;Wen-An Jiang,&nbsp;Li-Qun Chen\",\"doi\":\"10.1007/s12043-024-02806-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper explores the effectiveness of the Lie derivative discretisation scheme applied to two particular types of nonlinear dynamical equations, both of which have the characteristic of time variables in the denominator position. The discrete structure of non-autonomous systems is established. In particular, we exclude time variables as state variables to prevent non-autonomous systems from becoming autonomous systems. Using this method, we compute the numerical solution of the system above and compare it with the precise solution and the numerical findings of Runge–Kutta, demonstrating the broad applicability of the Lie derivative numerical algorithm. Finally, we determine the CPU consumption time of two numerical algorithms, thus providing evidence of the high efficiency of the Lie derivative numerical algorithm.\\n</p></div>\",\"PeriodicalId\":743,\"journal\":{\"name\":\"Pramana\",\"volume\":\"98 3\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pramana\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12043-024-02806-2\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pramana","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1007/s12043-024-02806-2","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文探讨了应用于两类特殊非线性动力学方程的列导数离散化方案的有效性,这两类方程的分母位置都具有时间变量的特征。本文建立了非自治系统的离散结构。特别是,我们排除了作为状态变量的时间变量,以防止非自治系统成为自治系统。利用这种方法,我们计算了上述系统的数值解,并将其与 Runge-Kutta 的精确解和数值结果进行了比较,证明了列导数数值算法的广泛适用性。最后,我们确定了两种数值算法的 CPU 消耗时间,从而证明了列导数数值算法的高效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Efficient Lie derivative algorithm for two special nonlinear equations

Efficient Lie derivative algorithm for two special nonlinear equations

This paper explores the effectiveness of the Lie derivative discretisation scheme applied to two particular types of nonlinear dynamical equations, both of which have the characteristic of time variables in the denominator position. The discrete structure of non-autonomous systems is established. In particular, we exclude time variables as state variables to prevent non-autonomous systems from becoming autonomous systems. Using this method, we compute the numerical solution of the system above and compare it with the precise solution and the numerical findings of Runge–Kutta, demonstrating the broad applicability of the Lie derivative numerical algorithm. Finally, we determine the CPU consumption time of two numerical algorithms, thus providing evidence of the high efficiency of the Lie derivative numerical algorithm.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Pramana
Pramana 物理-物理:综合
CiteScore
3.60
自引率
7.10%
发文量
206
审稿时长
3 months
期刊介绍: Pramana - Journal of Physics is a monthly research journal in English published by the Indian Academy of Sciences in collaboration with Indian National Science Academy and Indian Physics Association. The journal publishes refereed papers covering current research in Physics, both original contributions - research papers, brief reports or rapid communications - and invited reviews. Pramana also publishes special issues devoted to advances in specific areas of Physics and proceedings of select high quality conferences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信