具有快速更新时间和少量追索权的全动态 $k$ 聚类

Sayan Bhattacharya, Martín Costa, Naveen Garg, Silvio Lattanzi, Nikos Parotsidis
{"title":"具有快速更新时间和少量追索权的全动态 $k$ 聚类","authors":"Sayan Bhattacharya, Martín Costa, Naveen Garg, Silvio Lattanzi, Nikos Parotsidis","doi":"arxiv-2408.01325","DOIUrl":null,"url":null,"abstract":"In the dynamic metric $k$-median problem, we wish to maintain a set of $k$\ncenters $S \\subseteq V$ in an input metric space $(V, d)$ that gets updated via\npoint insertions/deletions, so as to minimize the objective $\\sum_{x \\in V}\n\\min_{y \\in S} d(x, y)$. The quality of a dynamic algorithm is measured in\nterms of its approximation ratio, \"recourse\" (the number of changes in $S$ per\nupdate) and \"update time\" (the time it takes to handle an update). The ultimate\ngoal in this line of research is to obtain a dynamic $O(1)$ approximation\nalgorithm with $\\tilde{O}(1)$ recourse and $\\tilde{O}(k)$ update time. Dynamic $k$-median is a canonical example of a class of problems known as\ndynamic $k$-clustering, that has received significant attention in recent\nyears. To the best of our knowledge, however, previous papers either attempt to\nminimize the algorithm's recourse while ignoring its update time, or minimize\nthe algorithm's update time while ignoring its recourse. For dynamic\n$k$-median, we come arbitrarily close to resolving the main open question on\nthis topic, with the following results. (I) We develop a new framework of randomized local search that is suitable\nfor adaptation in a dynamic setting. For every $\\epsilon > 0$, this gives us a\ndynamic $k$-median algorithm with $O(1/\\epsilon)$ approximation ratio,\n$\\tilde{O}(k^{\\epsilon})$ recourse and $\\tilde{O}(k^{1+\\epsilon})$ update time.\nThis framework also generalizes to dynamic $k$-clustering with $\\ell^p$-norm\nobjectives, giving similar bounds for the dynamic $k$-means and a new trade-off\nfor dynamic $k$-center. (II) If it suffices to maintain only an estimate of the value of the optimal\n$k$-median objective, then we obtain a $O(1)$ approximation algorithm with\n$\\tilde{O}(k)$ update time. We achieve this result via adapting the Lagrangian\nRelaxation framework to the dynamic setting.","PeriodicalId":501525,"journal":{"name":"arXiv - CS - Data Structures and Algorithms","volume":"35 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fully Dynamic $k$-Clustering with Fast Update Time and Small Recourse\",\"authors\":\"Sayan Bhattacharya, Martín Costa, Naveen Garg, Silvio Lattanzi, Nikos Parotsidis\",\"doi\":\"arxiv-2408.01325\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the dynamic metric $k$-median problem, we wish to maintain a set of $k$\\ncenters $S \\\\subseteq V$ in an input metric space $(V, d)$ that gets updated via\\npoint insertions/deletions, so as to minimize the objective $\\\\sum_{x \\\\in V}\\n\\\\min_{y \\\\in S} d(x, y)$. The quality of a dynamic algorithm is measured in\\nterms of its approximation ratio, \\\"recourse\\\" (the number of changes in $S$ per\\nupdate) and \\\"update time\\\" (the time it takes to handle an update). The ultimate\\ngoal in this line of research is to obtain a dynamic $O(1)$ approximation\\nalgorithm with $\\\\tilde{O}(1)$ recourse and $\\\\tilde{O}(k)$ update time. Dynamic $k$-median is a canonical example of a class of problems known as\\ndynamic $k$-clustering, that has received significant attention in recent\\nyears. To the best of our knowledge, however, previous papers either attempt to\\nminimize the algorithm's recourse while ignoring its update time, or minimize\\nthe algorithm's update time while ignoring its recourse. For dynamic\\n$k$-median, we come arbitrarily close to resolving the main open question on\\nthis topic, with the following results. (I) We develop a new framework of randomized local search that is suitable\\nfor adaptation in a dynamic setting. For every $\\\\epsilon > 0$, this gives us a\\ndynamic $k$-median algorithm with $O(1/\\\\epsilon)$ approximation ratio,\\n$\\\\tilde{O}(k^{\\\\epsilon})$ recourse and $\\\\tilde{O}(k^{1+\\\\epsilon})$ update time.\\nThis framework also generalizes to dynamic $k$-clustering with $\\\\ell^p$-norm\\nobjectives, giving similar bounds for the dynamic $k$-means and a new trade-off\\nfor dynamic $k$-center. (II) If it suffices to maintain only an estimate of the value of the optimal\\n$k$-median objective, then we obtain a $O(1)$ approximation algorithm with\\n$\\\\tilde{O}(k)$ update time. We achieve this result via adapting the Lagrangian\\nRelaxation framework to the dynamic setting.\",\"PeriodicalId\":501525,\"journal\":{\"name\":\"arXiv - CS - Data Structures and Algorithms\",\"volume\":\"35 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Data Structures and Algorithms\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.01325\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Data Structures and Algorithms","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.01325","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在动态度量 $k$-median 问题中,我们希望在输入度量空间 $(V, d)$ 中维护一组 $k$centers $S \subseteq V$,并对其进行更新 viapoint 插入/删除,以最小化目标 $\sum_{x\in V}\min_{y\in S} d(x, y)$ 。动态算法的质量是根据其近似率、"追索"(每次更新时 S$ 的变化次数)和 "更新时间"(处理一次更新所需的时间)来衡量的。这一研究方向的最终目标是获得一个具有 $\tilde{O}(1)$ 追索权和 $\tilde{O}(k)$ 更新时间的动态 $O(1)$ 近似算法。动态 $k$-median 是一类被称为动态 $k$ 聚类问题的典型例子,近年来受到了广泛关注。然而,据我们所知,以前的论文要么试图在忽略算法更新时间的同时最小化算法的求助,要么在忽略算法求助的同时最小化算法的更新时间。对于动态 k$-median 算法,我们通过以下结果,非常接近于解决这一课题的主要悬而未决问题。(I) 我们开发了一个适合动态适应的随机局部搜索新框架。对于每一个 $\epsilon > 0$,我们都可以得到一个动态的 $k$-median 算法,其近似率为 $O(1/\epsilon)$,求助次数为 $\tilde{O}(k^{\epsilon})$,更新时间为 $\tilde{O}(k^{1+\epsilon})$。这个框架还可以推广到具有 $\ell^p$ 准则目标的动态 $k$ 聚类,为动态 $k$ 均值给出类似的约束,并为动态 $k$ 中心给出新的权衡。(II) 如果只需保持最优$k$中值目标值的估计值,那么我们就能得到更新时间为$\tilde{O}(k)$的$O(1)$近似算法。我们通过将拉格朗日回归框架调整到动态环境中来实现这一结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fully Dynamic $k$-Clustering with Fast Update Time and Small Recourse
In the dynamic metric $k$-median problem, we wish to maintain a set of $k$ centers $S \subseteq V$ in an input metric space $(V, d)$ that gets updated via point insertions/deletions, so as to minimize the objective $\sum_{x \in V} \min_{y \in S} d(x, y)$. The quality of a dynamic algorithm is measured in terms of its approximation ratio, "recourse" (the number of changes in $S$ per update) and "update time" (the time it takes to handle an update). The ultimate goal in this line of research is to obtain a dynamic $O(1)$ approximation algorithm with $\tilde{O}(1)$ recourse and $\tilde{O}(k)$ update time. Dynamic $k$-median is a canonical example of a class of problems known as dynamic $k$-clustering, that has received significant attention in recent years. To the best of our knowledge, however, previous papers either attempt to minimize the algorithm's recourse while ignoring its update time, or minimize the algorithm's update time while ignoring its recourse. For dynamic $k$-median, we come arbitrarily close to resolving the main open question on this topic, with the following results. (I) We develop a new framework of randomized local search that is suitable for adaptation in a dynamic setting. For every $\epsilon > 0$, this gives us a dynamic $k$-median algorithm with $O(1/\epsilon)$ approximation ratio, $\tilde{O}(k^{\epsilon})$ recourse and $\tilde{O}(k^{1+\epsilon})$ update time. This framework also generalizes to dynamic $k$-clustering with $\ell^p$-norm objectives, giving similar bounds for the dynamic $k$-means and a new trade-off for dynamic $k$-center. (II) If it suffices to maintain only an estimate of the value of the optimal $k$-median objective, then we obtain a $O(1)$ approximation algorithm with $\tilde{O}(k)$ update time. We achieve this result via adapting the Lagrangian Relaxation framework to the dynamic setting.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信