利用子立方体查询改进高维等效性和产品测试的界限

Tomer Adar, Eldar Fischer, Amit Levi
{"title":"利用子立方体查询改进高维等效性和产品测试的界限","authors":"Tomer Adar, Eldar Fischer, Amit Levi","doi":"arxiv-2408.02347","DOIUrl":null,"url":null,"abstract":"We study property testing in the subcube conditional model introduced by\nBhattacharyya and Chakraborty (2017). We obtain the first equivalence test for\n$n$-dimensional distributions that is quasi-linear in $n$, improving the\npreviously known $\\tilde{O}(n^2/\\varepsilon^2)$ query complexity bound to\n$\\tilde{O}(n/\\varepsilon^2)$. We extend this result to general finite alphabets\nwith logarithmic cost in the alphabet size. By exploiting the specific structure of the queries that we use (which are\nmore restrictive than general subcube queries), we obtain a cubic improvement\nover the best known test for distributions over $\\{1,\\ldots,N\\}$ under the\ninterval querying model of Canonne, Ron and Servedio (2015), attaining a query\ncomplexity of $\\tilde{O}((\\log N)/\\varepsilon^2)$, which for fixed\n$\\varepsilon$ almost matches the known lower bound of $\\Omega((\\log N)/\\log\\log\nN)$. We also derive a product test for $n$-dimensional distributions with\n$\\tilde{O}(n / \\varepsilon^2)$ queries, and provide an $\\Omega(\\sqrt{n} /\n\\varepsilon^2)$ lower bound for this property.","PeriodicalId":501525,"journal":{"name":"arXiv - CS - Data Structures and Algorithms","volume":"27 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improved Bounds for High-Dimensional Equivalence and Product Testing using Subcube Queries\",\"authors\":\"Tomer Adar, Eldar Fischer, Amit Levi\",\"doi\":\"arxiv-2408.02347\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study property testing in the subcube conditional model introduced by\\nBhattacharyya and Chakraborty (2017). We obtain the first equivalence test for\\n$n$-dimensional distributions that is quasi-linear in $n$, improving the\\npreviously known $\\\\tilde{O}(n^2/\\\\varepsilon^2)$ query complexity bound to\\n$\\\\tilde{O}(n/\\\\varepsilon^2)$. We extend this result to general finite alphabets\\nwith logarithmic cost in the alphabet size. By exploiting the specific structure of the queries that we use (which are\\nmore restrictive than general subcube queries), we obtain a cubic improvement\\nover the best known test for distributions over $\\\\{1,\\\\ldots,N\\\\}$ under the\\ninterval querying model of Canonne, Ron and Servedio (2015), attaining a query\\ncomplexity of $\\\\tilde{O}((\\\\log N)/\\\\varepsilon^2)$, which for fixed\\n$\\\\varepsilon$ almost matches the known lower bound of $\\\\Omega((\\\\log N)/\\\\log\\\\log\\nN)$. We also derive a product test for $n$-dimensional distributions with\\n$\\\\tilde{O}(n / \\\\varepsilon^2)$ queries, and provide an $\\\\Omega(\\\\sqrt{n} /\\n\\\\varepsilon^2)$ lower bound for this property.\",\"PeriodicalId\":501525,\"journal\":{\"name\":\"arXiv - CS - Data Structures and Algorithms\",\"volume\":\"27 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Data Structures and Algorithms\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.02347\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Data Structures and Algorithms","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.02347","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了由 Bhattacharyya 和 Chakraborty(2017)引入的子立方条件模型中的属性检验。我们得到了第一个针对$n$维分布的等价测试,它与$n$呈准线性关系,从而将之前已知的$\tilde{O}(n^2/\varepsilon^2)$查询复杂度约束改进为$\tilde{O}(n/\varepsilon^2)$。我们将这一结果扩展到了字母大小为对数成本的一般有限字母。通过利用我们所使用的查询的特定结构(比一般的子立方查询更具限制性),我们得到了一个立方改进,超过了对 ${1,\ldots、N\}$ 在 Canonne、Ron 和 Servedio(2015)的区间查询模型下,查询复杂度为 $\tilde{O}((\log N)/\varepsilon^2)$ ,这对于固定的 $\varepsilon$ 几乎与已知的下限 $\Omega((\log N)/\log\logN)$ 匹配。我们还推导了一个针对 $n$ 维分布的乘积检验,其查询次数为 $tilde{O}(n /\varepsilon^2)$ ,并为这一属性提供了一个 $\Omega(\sqrt{n} /\varepsilon^2)$ 下界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improved Bounds for High-Dimensional Equivalence and Product Testing using Subcube Queries
We study property testing in the subcube conditional model introduced by Bhattacharyya and Chakraborty (2017). We obtain the first equivalence test for $n$-dimensional distributions that is quasi-linear in $n$, improving the previously known $\tilde{O}(n^2/\varepsilon^2)$ query complexity bound to $\tilde{O}(n/\varepsilon^2)$. We extend this result to general finite alphabets with logarithmic cost in the alphabet size. By exploiting the specific structure of the queries that we use (which are more restrictive than general subcube queries), we obtain a cubic improvement over the best known test for distributions over $\{1,\ldots,N\}$ under the interval querying model of Canonne, Ron and Servedio (2015), attaining a query complexity of $\tilde{O}((\log N)/\varepsilon^2)$, which for fixed $\varepsilon$ almost matches the known lower bound of $\Omega((\log N)/\log\log N)$. We also derive a product test for $n$-dimensional distributions with $\tilde{O}(n / \varepsilon^2)$ queries, and provide an $\Omega(\sqrt{n} / \varepsilon^2)$ lower bound for this property.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信