Patricia Fernández-López, Sofia A. Alves, Aleksey Rogov, Aleksey Yerokhin, Iban Quintana, Aitor Duo, Aitor Aguirre-Ortuzar
{"title":"利用可解释的人工智能见解,以数据驱动优化等离子电解氧化(PEO)涂层","authors":"Patricia Fernández-López, Sofia A. Alves, Aleksey Rogov, Aleksey Yerokhin, Iban Quintana, Aitor Duo, Aitor Aguirre-Ortuzar","doi":"10.3390/coatings14080979","DOIUrl":null,"url":null,"abstract":"PEO constitutes a promising surface technology for the development of protective and functional ceramic coatings on lightweight alloys. Despite its interesting advantages, including enhanced wear and corrosion resistances and eco-friendliness, the industrial implementation of PEO technology is limited by its relatively high energy consumption. This study explores the development and optimization of novel PEO processes by means of machine learning (ML) to improve the coating thickness. For this purpose, ML models random forest and XGBoost were employed to predict the thickness of the developed PEO coatings based on the key process variables (frequency, current density, and electrolyte composition). The predictive performance was significantly improved by including the composition of the used electrolyte in the models. Furthermore, Shapley values identified the pulse frequency and the TiO2 concentration in the electrolyte as the most influential variables, with higher values leading to increased coating thickness. The residual analysis revealed a certain heteroscedasticity, which suggests the need for additional samples with high thickness to improve the accuracy of the model. This study reveals the potential of artificial intelligence (AI)-driven optimization in PEO processes, which could pave the way for more efficient and cost-effective industrial applications. The findings achieved further emphasize the significance of integrating interactions between variables, such as frequency and TiO2 concentration, into the design of processing operations.","PeriodicalId":10520,"journal":{"name":"Coatings","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Data-Driven Optimization of Plasma Electrolytic Oxidation (PEO) Coatings with Explainable Artificial Intelligence Insights\",\"authors\":\"Patricia Fernández-López, Sofia A. Alves, Aleksey Rogov, Aleksey Yerokhin, Iban Quintana, Aitor Duo, Aitor Aguirre-Ortuzar\",\"doi\":\"10.3390/coatings14080979\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"PEO constitutes a promising surface technology for the development of protective and functional ceramic coatings on lightweight alloys. Despite its interesting advantages, including enhanced wear and corrosion resistances and eco-friendliness, the industrial implementation of PEO technology is limited by its relatively high energy consumption. This study explores the development and optimization of novel PEO processes by means of machine learning (ML) to improve the coating thickness. For this purpose, ML models random forest and XGBoost were employed to predict the thickness of the developed PEO coatings based on the key process variables (frequency, current density, and electrolyte composition). The predictive performance was significantly improved by including the composition of the used electrolyte in the models. Furthermore, Shapley values identified the pulse frequency and the TiO2 concentration in the electrolyte as the most influential variables, with higher values leading to increased coating thickness. The residual analysis revealed a certain heteroscedasticity, which suggests the need for additional samples with high thickness to improve the accuracy of the model. This study reveals the potential of artificial intelligence (AI)-driven optimization in PEO processes, which could pave the way for more efficient and cost-effective industrial applications. The findings achieved further emphasize the significance of integrating interactions between variables, such as frequency and TiO2 concentration, into the design of processing operations.\",\"PeriodicalId\":10520,\"journal\":{\"name\":\"Coatings\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-08-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Coatings\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.3390/coatings14080979\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, COATINGS & FILMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Coatings","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/coatings14080979","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, COATINGS & FILMS","Score":null,"Total":0}
Data-Driven Optimization of Plasma Electrolytic Oxidation (PEO) Coatings with Explainable Artificial Intelligence Insights
PEO constitutes a promising surface technology for the development of protective and functional ceramic coatings on lightweight alloys. Despite its interesting advantages, including enhanced wear and corrosion resistances and eco-friendliness, the industrial implementation of PEO technology is limited by its relatively high energy consumption. This study explores the development and optimization of novel PEO processes by means of machine learning (ML) to improve the coating thickness. For this purpose, ML models random forest and XGBoost were employed to predict the thickness of the developed PEO coatings based on the key process variables (frequency, current density, and electrolyte composition). The predictive performance was significantly improved by including the composition of the used electrolyte in the models. Furthermore, Shapley values identified the pulse frequency and the TiO2 concentration in the electrolyte as the most influential variables, with higher values leading to increased coating thickness. The residual analysis revealed a certain heteroscedasticity, which suggests the need for additional samples with high thickness to improve the accuracy of the model. This study reveals the potential of artificial intelligence (AI)-driven optimization in PEO processes, which could pave the way for more efficient and cost-effective industrial applications. The findings achieved further emphasize the significance of integrating interactions between variables, such as frequency and TiO2 concentration, into the design of processing operations.
CoatingsMaterials Science-Surfaces, Coatings and Films
CiteScore
5.00
自引率
11.80%
发文量
1657
审稿时长
1.4 months
期刊介绍:
Coatings is an international, peer-reviewed open access journal of coatings and surface engineering. It publishes reviews, research articles, communications and technical notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. Full experimental and/or methodical details must be provided. There are, in addition, unique features of this journal:
* manuscripts regarding research proposals and research ideas will be particularly welcomed
* electronic files or software regarding the full details of the calculation and experimental procedure - if unable to be published in a normal way - can be deposited as supplementary material