María Elena Sánchez Vergara, Eva Alejandra Santillán Esquivel, Ricardo Ballinas-Indilí, Octavio Lozada-Flores, René Miranda-Ruvalcaba, Cecilio Álvarez-Toledano
{"title":"用回收的利乐包®电极和对位醌甲醚制造的有机半导体器件","authors":"María Elena Sánchez Vergara, Eva Alejandra Santillán Esquivel, Ricardo Ballinas-Indilí, Octavio Lozada-Flores, René Miranda-Ruvalcaba, Cecilio Álvarez-Toledano","doi":"10.3390/coatings14080998","DOIUrl":null,"url":null,"abstract":"This work presents the synthesis of para-quinone methides (p-QMs), which were deposited as films using the high vacuum sublimation technique after being chemically characterized. The p-QMs films were characterized morphologically and structurally using scanning electron microscopy, atomic force microscopy, and X-ray diffraction. In addition, their optical behavior was studied by means of ultraviolet–visible spectroscopy, and the optical gaps obtained were in the range of 2.21–2.71 eV for indirect transitions, indicating the semiconductor behavior of the p-QMs. The above was verified through the manufacture and evaluation of the electrical behavior of rigid semiconductor devices, in which fluorine-doped tin oxide-coated glass slides (FTO) were used as an anode and substrate. Finally, as an original, ecological, and low-cost application, the FTO was replaced by substrates and anodes made from recycled Tetra Pak®, generating flexible semiconductor devices. Although the electrical current transported depends on the type of p-QMs, the substituent in its structure, and the morphology, the kinds of substrate and anode also influence the type of electrical behavior of the device. This current–voltage study demonstrates that p-QM2 with 4-Cl-Ph as a radical, p-QM3 with 4-Et2N-Ph as a radical, and p-QM6 with 5-(1,3-benzodioxol) as a radical can be used in optoelectronics as semiconductor films.","PeriodicalId":10520,"journal":{"name":"Coatings","volume":"26 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Organic Semiconductor Devices Fabricated with Recycled Tetra Pak®-Based Electrodes and para-Quinone Methides\",\"authors\":\"María Elena Sánchez Vergara, Eva Alejandra Santillán Esquivel, Ricardo Ballinas-Indilí, Octavio Lozada-Flores, René Miranda-Ruvalcaba, Cecilio Álvarez-Toledano\",\"doi\":\"10.3390/coatings14080998\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work presents the synthesis of para-quinone methides (p-QMs), which were deposited as films using the high vacuum sublimation technique after being chemically characterized. The p-QMs films were characterized morphologically and structurally using scanning electron microscopy, atomic force microscopy, and X-ray diffraction. In addition, their optical behavior was studied by means of ultraviolet–visible spectroscopy, and the optical gaps obtained were in the range of 2.21–2.71 eV for indirect transitions, indicating the semiconductor behavior of the p-QMs. The above was verified through the manufacture and evaluation of the electrical behavior of rigid semiconductor devices, in which fluorine-doped tin oxide-coated glass slides (FTO) were used as an anode and substrate. Finally, as an original, ecological, and low-cost application, the FTO was replaced by substrates and anodes made from recycled Tetra Pak®, generating flexible semiconductor devices. Although the electrical current transported depends on the type of p-QMs, the substituent in its structure, and the morphology, the kinds of substrate and anode also influence the type of electrical behavior of the device. This current–voltage study demonstrates that p-QM2 with 4-Cl-Ph as a radical, p-QM3 with 4-Et2N-Ph as a radical, and p-QM6 with 5-(1,3-benzodioxol) as a radical can be used in optoelectronics as semiconductor films.\",\"PeriodicalId\":10520,\"journal\":{\"name\":\"Coatings\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Coatings\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.3390/coatings14080998\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, COATINGS & FILMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Coatings","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/coatings14080998","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, COATINGS & FILMS","Score":null,"Total":0}
Organic Semiconductor Devices Fabricated with Recycled Tetra Pak®-Based Electrodes and para-Quinone Methides
This work presents the synthesis of para-quinone methides (p-QMs), which were deposited as films using the high vacuum sublimation technique after being chemically characterized. The p-QMs films were characterized morphologically and structurally using scanning electron microscopy, atomic force microscopy, and X-ray diffraction. In addition, their optical behavior was studied by means of ultraviolet–visible spectroscopy, and the optical gaps obtained were in the range of 2.21–2.71 eV for indirect transitions, indicating the semiconductor behavior of the p-QMs. The above was verified through the manufacture and evaluation of the electrical behavior of rigid semiconductor devices, in which fluorine-doped tin oxide-coated glass slides (FTO) were used as an anode and substrate. Finally, as an original, ecological, and low-cost application, the FTO was replaced by substrates and anodes made from recycled Tetra Pak®, generating flexible semiconductor devices. Although the electrical current transported depends on the type of p-QMs, the substituent in its structure, and the morphology, the kinds of substrate and anode also influence the type of electrical behavior of the device. This current–voltage study demonstrates that p-QM2 with 4-Cl-Ph as a radical, p-QM3 with 4-Et2N-Ph as a radical, and p-QM6 with 5-(1,3-benzodioxol) as a radical can be used in optoelectronics as semiconductor films.
CoatingsMaterials Science-Surfaces, Coatings and Films
CiteScore
5.00
自引率
11.80%
发文量
1657
审稿时长
1.4 months
期刊介绍:
Coatings is an international, peer-reviewed open access journal of coatings and surface engineering. It publishes reviews, research articles, communications and technical notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. Full experimental and/or methodical details must be provided. There are, in addition, unique features of this journal:
* manuscripts regarding research proposals and research ideas will be particularly welcomed
* electronic files or software regarding the full details of the calculation and experimental procedure - if unable to be published in a normal way - can be deposited as supplementary material