激光熔覆 Al2O3 增强铁铝涂层的微观结构、腐蚀磨损和电化学性能

IF 2.3 4区 材料科学 Q2 METALLURGY & METALLURGICAL ENGINEERING
Yang Haoming, Kong Dejun
{"title":"激光熔覆 Al2O3 增强铁铝涂层的微观结构、腐蚀磨损和电化学性能","authors":"Yang Haoming, Kong Dejun","doi":"10.1108/acmm-03-2024-2987","DOIUrl":null,"url":null,"abstract":"<h3>Purpose</h3>\n<p>This study aims to investigate the influences of Al<sub>2</sub>O<sub>3</sub> mass fraction on the corrosive wear and electrochemical behaviors of FeAl–xAl<sub>2</sub>O<sub>3</sub> coatings.</p><!--/ Abstract__block -->\n<h3>Design/methodology/approach</h3>\n<p>FeAl–xAl<sub>2</sub>O<sub>3</sub> coatings were prepared on S355 steel by laser cladding to improve its corrosive wear and electrochemical properties.</p><!--/ Abstract__block -->\n<h3>Findings</h3>\n<p>The average coefficients of friction and wear rates of FeAl–xAl<sub>2</sub>O<sub>3</sub> coatings are decreased with the Al<sub>2</sub>O<sub>3</sub> mass fraction, and the Al<sub>2</sub>O<sub>3</sub> plays a positive role in the corrosion wear resistance. Moreover, the charge transfer resistance of FeAl–xAl<sub>2</sub>O<sub>3</sub> coatings is increased with the Al<sub>2</sub>O<sub>3</sub> mass fraction, showing the FeAl–15%Al<sub>2</sub>O<sub>3</sub> coating has the best corrosion resistance. The findings show the corrosion resistance of FeAl–15%Al<sub>2</sub>O<sub>3</sub> coating is the highest among the three kinds of coatings.</p><!--/ Abstract__block -->\n<h3>Originality/value</h3>\n<p>Al<sub>2</sub>O<sub>3</sub> was first added into FeAl coatings to further improve its corrosive wear and electrochemical properties by laser cladding.</p><!--/ Abstract__block -->","PeriodicalId":8217,"journal":{"name":"Anti-corrosion Methods and Materials","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Microstructure, corrosive wear and electrochemical properties of Al2O3 reinforced FeAl coatings by laser cladding\",\"authors\":\"Yang Haoming, Kong Dejun\",\"doi\":\"10.1108/acmm-03-2024-2987\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Purpose</h3>\\n<p>This study aims to investigate the influences of Al<sub>2</sub>O<sub>3</sub> mass fraction on the corrosive wear and electrochemical behaviors of FeAl–xAl<sub>2</sub>O<sub>3</sub> coatings.</p><!--/ Abstract__block -->\\n<h3>Design/methodology/approach</h3>\\n<p>FeAl–xAl<sub>2</sub>O<sub>3</sub> coatings were prepared on S355 steel by laser cladding to improve its corrosive wear and electrochemical properties.</p><!--/ Abstract__block -->\\n<h3>Findings</h3>\\n<p>The average coefficients of friction and wear rates of FeAl–xAl<sub>2</sub>O<sub>3</sub> coatings are decreased with the Al<sub>2</sub>O<sub>3</sub> mass fraction, and the Al<sub>2</sub>O<sub>3</sub> plays a positive role in the corrosion wear resistance. Moreover, the charge transfer resistance of FeAl–xAl<sub>2</sub>O<sub>3</sub> coatings is increased with the Al<sub>2</sub>O<sub>3</sub> mass fraction, showing the FeAl–15%Al<sub>2</sub>O<sub>3</sub> coating has the best corrosion resistance. The findings show the corrosion resistance of FeAl–15%Al<sub>2</sub>O<sub>3</sub> coating is the highest among the three kinds of coatings.</p><!--/ Abstract__block -->\\n<h3>Originality/value</h3>\\n<p>Al<sub>2</sub>O<sub>3</sub> was first added into FeAl coatings to further improve its corrosive wear and electrochemical properties by laser cladding.</p><!--/ Abstract__block -->\",\"PeriodicalId\":8217,\"journal\":{\"name\":\"Anti-corrosion Methods and Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Anti-corrosion Methods and Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1108/acmm-03-2024-2987\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anti-corrosion Methods and Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1108/acmm-03-2024-2987","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

目的 本研究旨在探讨 Al2O3 质量分数对 FeAl-xAl2O3 涂层腐蚀磨损和电化学行为的影响。设计/方法/方法采用激光熔覆法在 S355 钢上制备 FeAl-xAl2O3 涂层,以改善其腐蚀磨损和电化学性能。研究结果FeAl-xAl2O3 涂层的平均摩擦系数和磨损率随 Al2O3 质量分数的增加而降低,Al2O3 对耐腐蚀磨损性能起积极作用。此外,FeAl-xAl2O3 涂层的电荷转移电阻随 Al2O3 质量分数的增加而增加,表明 FeAl-15%Al2O3 涂层的耐腐蚀性最好。研究结果表明,FeAl-15%Al2O3 涂层的耐腐蚀性是三种涂层中最高的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Microstructure, corrosive wear and electrochemical properties of Al2O3 reinforced FeAl coatings by laser cladding

Purpose

This study aims to investigate the influences of Al2O3 mass fraction on the corrosive wear and electrochemical behaviors of FeAl–xAl2O3 coatings.

Design/methodology/approach

FeAl–xAl2O3 coatings were prepared on S355 steel by laser cladding to improve its corrosive wear and electrochemical properties.

Findings

The average coefficients of friction and wear rates of FeAl–xAl2O3 coatings are decreased with the Al2O3 mass fraction, and the Al2O3 plays a positive role in the corrosion wear resistance. Moreover, the charge transfer resistance of FeAl–xAl2O3 coatings is increased with the Al2O3 mass fraction, showing the FeAl–15%Al2O3 coating has the best corrosion resistance. The findings show the corrosion resistance of FeAl–15%Al2O3 coating is the highest among the three kinds of coatings.

Originality/value

Al2O3 was first added into FeAl coatings to further improve its corrosive wear and electrochemical properties by laser cladding.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Anti-corrosion Methods and Materials
Anti-corrosion Methods and Materials 工程技术-冶金工程
CiteScore
2.80
自引率
16.70%
发文量
61
审稿时长
13.5 months
期刊介绍: Anti-Corrosion Methods and Materials publishes a broad coverage of the materials and techniques employed in corrosion prevention. Coverage is essentially of a practical nature and designed to be of material benefit to those working in the field. Proven applications are covered together with company news and new product information. Anti-Corrosion Methods and Materials now also includes research articles that reflect the most interesting and strategically important research and development activities from around the world. Every year, industry pays a massive and rising cost for its corrosion problems. Research and development into new materials, processes and initiatives to combat this loss is increasing, and new findings are constantly coming to light which can help to beat corrosion problems throughout industry. This journal uniquely focuses on these exciting developments to make essential reading for anyone aiming to regain profits lost through corrosion difficulties. • New methods, materials and software • New developments in research and industry • Stainless steels • Protection of structural steelwork • Industry update, conference news, dates and events • Environmental issues • Health & safety, including EC regulations • Corrosion monitoring and plant health assessment • The latest equipment and processes • Corrosion cost and corrosion risk management.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信