介电陶瓷上掺杂捐献者的缺陷控制,以提高巨容率和温度稳定性

IF 2.9 3区 材料科学 Q2 MATERIALS SCIENCE, COATINGS & FILMS
Coatings Pub Date : 2024-08-12 DOI:10.3390/coatings14081024
Wei Wang, Tingting Fan, Songxiang Hu, Jinli Zhang, Xuefeng Zou, Ying Yang, Zhanming Dou, Lin Zhou, Jun Hu, Jing Wang, Shenglin Jiang
{"title":"介电陶瓷上掺杂捐献者的缺陷控制,以提高巨容率和温度稳定性","authors":"Wei Wang, Tingting Fan, Songxiang Hu, Jinli Zhang, Xuefeng Zou, Ying Yang, Zhanming Dou, Lin Zhou, Jun Hu, Jing Wang, Shenglin Jiang","doi":"10.3390/coatings14081024","DOIUrl":null,"url":null,"abstract":"As the demand for miniaturization of electronic devices increases, ceramics with an ABO3 structure require further improvement of the dielectric constant with high permittivity. In the present work, Ba1−1.5xBixTiO3 (BB100xT, x = 0.0025, 0.005, 0.0075, 0.01) ceramics were prepared via a solid-state reaction process. The effect of Bi doping on dielectric properties of lead-free relaxor ferroelectric BaTiO3-based ceramics was studied. The results showed that both colossal permittivity (37,174) and a temperature stability of TCC ≤ ±15% (−27–141 °C) were achieved in BB100xT ceramics at x = 0.5%. The A-site donor doping produces A-site vacancies, a larger space for Ti4+, and fluctuation of the component, which is partially responsible for the high permittivity and responsible for the temperature stability. Meanwhile, the contribution of defect dipoles, and IBLC and SBLC effects to polarization leads to the colossal permittivity. The formation of a liquid phase during sintering promotes mass transfer when the doping content is higher than 0.5%. This work benefits the exploration of novel multilayer ceramic capacitors with colossal permittivity and temperature stability via defect engineering.","PeriodicalId":10520,"journal":{"name":"Coatings","volume":"138 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Defect Control of Donor Doping on Dielectric Ceramics to Improve the Colossal Permittivity and Temperature Stability\",\"authors\":\"Wei Wang, Tingting Fan, Songxiang Hu, Jinli Zhang, Xuefeng Zou, Ying Yang, Zhanming Dou, Lin Zhou, Jun Hu, Jing Wang, Shenglin Jiang\",\"doi\":\"10.3390/coatings14081024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As the demand for miniaturization of electronic devices increases, ceramics with an ABO3 structure require further improvement of the dielectric constant with high permittivity. In the present work, Ba1−1.5xBixTiO3 (BB100xT, x = 0.0025, 0.005, 0.0075, 0.01) ceramics were prepared via a solid-state reaction process. The effect of Bi doping on dielectric properties of lead-free relaxor ferroelectric BaTiO3-based ceramics was studied. The results showed that both colossal permittivity (37,174) and a temperature stability of TCC ≤ ±15% (−27–141 °C) were achieved in BB100xT ceramics at x = 0.5%. The A-site donor doping produces A-site vacancies, a larger space for Ti4+, and fluctuation of the component, which is partially responsible for the high permittivity and responsible for the temperature stability. Meanwhile, the contribution of defect dipoles, and IBLC and SBLC effects to polarization leads to the colossal permittivity. The formation of a liquid phase during sintering promotes mass transfer when the doping content is higher than 0.5%. This work benefits the exploration of novel multilayer ceramic capacitors with colossal permittivity and temperature stability via defect engineering.\",\"PeriodicalId\":10520,\"journal\":{\"name\":\"Coatings\",\"volume\":\"138 1\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Coatings\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.3390/coatings14081024\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, COATINGS & FILMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Coatings","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/coatings14081024","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, COATINGS & FILMS","Score":null,"Total":0}
引用次数: 0

摘要

随着电子设备微型化需求的增加,具有 ABO3 结构的陶瓷需要进一步提高介电常数和高介电常数。本研究通过固态反应过程制备了 Ba1-1.5xBixTiO3 (BB100xT, x = 0.0025, 0.005, 0.0075, 0.01) 陶瓷。研究了 Bi 掺杂对无铅弛豫铁电体 BaTiO3 基陶瓷介电性能的影响。结果表明,在 x = 0.5% 时,BB100xT 陶瓷实现了巨大的介电系数 (37,174) 和 TCC ≤ ±15% (-27-141 °C) 的温度稳定性。A 位供体掺杂产生了 A 位空位,为 Ti4+ 提供了更大的空间,并产生了分量波动,这是高介电常数的部分原因,也是温度稳定性的原因。同时,缺陷偶极子、IBLC 和 SBLC 效应对极化的贡献导致了巨大的介电常数。当掺杂含量高于 0.5% 时,烧结过程中液相的形成促进了传质。这项工作有助于通过缺陷工程学探索具有巨大介电常数和温度稳定性的新型多层陶瓷电容器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Defect Control of Donor Doping on Dielectric Ceramics to Improve the Colossal Permittivity and Temperature Stability
As the demand for miniaturization of electronic devices increases, ceramics with an ABO3 structure require further improvement of the dielectric constant with high permittivity. In the present work, Ba1−1.5xBixTiO3 (BB100xT, x = 0.0025, 0.005, 0.0075, 0.01) ceramics were prepared via a solid-state reaction process. The effect of Bi doping on dielectric properties of lead-free relaxor ferroelectric BaTiO3-based ceramics was studied. The results showed that both colossal permittivity (37,174) and a temperature stability of TCC ≤ ±15% (−27–141 °C) were achieved in BB100xT ceramics at x = 0.5%. The A-site donor doping produces A-site vacancies, a larger space for Ti4+, and fluctuation of the component, which is partially responsible for the high permittivity and responsible for the temperature stability. Meanwhile, the contribution of defect dipoles, and IBLC and SBLC effects to polarization leads to the colossal permittivity. The formation of a liquid phase during sintering promotes mass transfer when the doping content is higher than 0.5%. This work benefits the exploration of novel multilayer ceramic capacitors with colossal permittivity and temperature stability via defect engineering.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Coatings
Coatings Materials Science-Surfaces, Coatings and Films
CiteScore
5.00
自引率
11.80%
发文量
1657
审稿时长
1.4 months
期刊介绍: Coatings is an international, peer-reviewed open access journal of coatings and surface engineering. It publishes reviews, research articles, communications and technical notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. Full experimental and/or methodical details must be provided. There are, in addition, unique features of this journal: * manuscripts regarding research proposals and research ideas will be particularly welcomed * electronic files or software regarding the full details of the calculation and experimental procedure - if unable to be published in a normal way - can be deposited as supplementary material
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信