更快更简单的在线/滑动最右侧 Lempel-Ziv 因式分解

Wataru Sumiyoshi, Takuya Mieno, Shunsuke Inenaga
{"title":"更快更简单的在线/滑动最右侧 Lempel-Ziv 因式分解","authors":"Wataru Sumiyoshi, Takuya Mieno, Shunsuke Inenaga","doi":"arxiv-2408.03008","DOIUrl":null,"url":null,"abstract":"We tackle the problems of computing the rightmost variant of the Lempel-Ziv\nfactorizations in the online/sliding model. Previous best bounds for this\nproblem are O(n log n) time with O(n) space, due to Amir et al. [IPL 2002] for\nthe online model, and due to Larsson [CPM 2014] for the sliding model. In this\npaper, we present faster O(n log n/log log n)-time solutions to both of the\nonline/sliding models. Our algorithms are built on a simple data structure\nnamed BP-linked trees, and on a slightly improved version of the range\nminimum/maximum query (RmQ/RMQ) data structure on a dynamic list of integers.\nWe also present other applications of our algorithms.","PeriodicalId":501525,"journal":{"name":"arXiv - CS - Data Structures and Algorithms","volume":"8 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Faster and simpler online/sliding rightmost Lempel-Ziv factorizations\",\"authors\":\"Wataru Sumiyoshi, Takuya Mieno, Shunsuke Inenaga\",\"doi\":\"arxiv-2408.03008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We tackle the problems of computing the rightmost variant of the Lempel-Ziv\\nfactorizations in the online/sliding model. Previous best bounds for this\\nproblem are O(n log n) time with O(n) space, due to Amir et al. [IPL 2002] for\\nthe online model, and due to Larsson [CPM 2014] for the sliding model. In this\\npaper, we present faster O(n log n/log log n)-time solutions to both of the\\nonline/sliding models. Our algorithms are built on a simple data structure\\nnamed BP-linked trees, and on a slightly improved version of the range\\nminimum/maximum query (RmQ/RMQ) data structure on a dynamic list of integers.\\nWe also present other applications of our algorithms.\",\"PeriodicalId\":501525,\"journal\":{\"name\":\"arXiv - CS - Data Structures and Algorithms\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Data Structures and Algorithms\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.03008\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Data Structures and Algorithms","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.03008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们要解决的问题是在在线/滑动模型中计算 Lempel-Ziv 因子化的最右变体。对于在线模型,阿米尔等人[IPL 2002]提出了该问题的最佳边界为O(n log n)时间与O(n)空间;对于滑动模型,拉尔森[CPM 2014]提出了该问题的最佳边界为O(n log n)时间与O(n)空间。在本文中,我们对这两种在线/滑动模型提出了更快的 O(n log n/log log n)时间解决方案。我们的算法建立在一个名为 BP 链接树的简单数据结构上,以及建立在一个动态整数列表上的范围最小/最大查询(RmQ/RMQ)数据结构的略微改进版本上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Faster and simpler online/sliding rightmost Lempel-Ziv factorizations
We tackle the problems of computing the rightmost variant of the Lempel-Ziv factorizations in the online/sliding model. Previous best bounds for this problem are O(n log n) time with O(n) space, due to Amir et al. [IPL 2002] for the online model, and due to Larsson [CPM 2014] for the sliding model. In this paper, we present faster O(n log n/log log n)-time solutions to both of the online/sliding models. Our algorithms are built on a simple data structure named BP-linked trees, and on a slightly improved version of the range minimum/maximum query (RmQ/RMQ) data structure on a dynamic list of integers. We also present other applications of our algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信