近似(和精确)k-相交-最短路径的下限

Rajesh Chitnis, Samuel Thomas, Anthony Wirth
{"title":"近似(和精确)k-相交-最短路径的下限","authors":"Rajesh Chitnis, Samuel Thomas, Anthony Wirth","doi":"arxiv-2408.03933","DOIUrl":null,"url":null,"abstract":"Given a graph $G=(V,E)$ and a set $T=\\{ (s_i, t_i) : 1\\leq i\\leq k\n\\}\\subseteq V\\times V$ of $k$ pairs, the $k$-vertex-disjoint-paths (resp.\n$k$-edge-disjoint-paths) problem asks to determine whether there exist~$k$\npairwise vertex-disjoint (resp. edge-disjoint) paths $P_1, P_2, ..., P_k$ in\n$G$ such that, for each $1\\leq i\\leq k$, $P_i$ connects $s_i$ to $t_i$. Both\nthe edge-disjoint and vertex-disjoint versions in undirected graphs are\nfamously known to be FPT (parameterized by $k$) due to the Graph Minor Theory\nof Robertson and Seymour. Eilam-Tzoreff [DAM `98] introduced a variant, known\nas the $k$-disjoint-shortest-paths problem, where each individual path is\nfurther required to be a shortest path connecting its pair. They showed that\nthe $k$-disjoint-shortest-paths problem is NP-complete on both directed and\nundirected graphs; this holds even if the graphs are planar and have unit edge\nlengths. We focus on four versions of the problem, corresponding to considering\nedge/vertex disjointness, and to considering directed/undirected graphs.\nBuilding on the reduction of Chitnis [SIDMA `23] for $k$-edge-disjoint-paths on\nplanar DAGs, we obtain the following inapproximability lower bound for each of\nthe four versions of $k$-disjoint-shortest-paths on $n$-vertex graphs: - Under\nGap-ETH, there exists a constant $\\delta>0$ such that for any constant\n$0<\\epsilon\\leq \\frac{1}{2}$ and any computable function $f$, there is no\n$(\\frac{1}{2}+\\epsilon)$-approx in $f(k)\\cdot n^{\\delta\\cdot k}$ time. We\nfurther strengthen our results as follows: Directed: Inapprox lower bound for\nedge-disjoint (resp. vertex-disjoint) paths holds even if the input graph is a\nplanar (resp. 1-planar) DAG with max in-degree and max out-degree at most $2$.\nUndirected: Inapprox lower bound for edge-disjoint (resp. vertex-disjoint)\npaths hold even if the input graph is planar (resp. 1-planar) and has max\ndegree $4$.","PeriodicalId":501525,"journal":{"name":"arXiv - CS - Data Structures and Algorithms","volume":"59 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lower Bounds for Approximate (& Exact) k-Disjoint-Shortest-Paths\",\"authors\":\"Rajesh Chitnis, Samuel Thomas, Anthony Wirth\",\"doi\":\"arxiv-2408.03933\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Given a graph $G=(V,E)$ and a set $T=\\\\{ (s_i, t_i) : 1\\\\leq i\\\\leq k\\n\\\\}\\\\subseteq V\\\\times V$ of $k$ pairs, the $k$-vertex-disjoint-paths (resp.\\n$k$-edge-disjoint-paths) problem asks to determine whether there exist~$k$\\npairwise vertex-disjoint (resp. edge-disjoint) paths $P_1, P_2, ..., P_k$ in\\n$G$ such that, for each $1\\\\leq i\\\\leq k$, $P_i$ connects $s_i$ to $t_i$. Both\\nthe edge-disjoint and vertex-disjoint versions in undirected graphs are\\nfamously known to be FPT (parameterized by $k$) due to the Graph Minor Theory\\nof Robertson and Seymour. Eilam-Tzoreff [DAM `98] introduced a variant, known\\nas the $k$-disjoint-shortest-paths problem, where each individual path is\\nfurther required to be a shortest path connecting its pair. They showed that\\nthe $k$-disjoint-shortest-paths problem is NP-complete on both directed and\\nundirected graphs; this holds even if the graphs are planar and have unit edge\\nlengths. We focus on four versions of the problem, corresponding to considering\\nedge/vertex disjointness, and to considering directed/undirected graphs.\\nBuilding on the reduction of Chitnis [SIDMA `23] for $k$-edge-disjoint-paths on\\nplanar DAGs, we obtain the following inapproximability lower bound for each of\\nthe four versions of $k$-disjoint-shortest-paths on $n$-vertex graphs: - Under\\nGap-ETH, there exists a constant $\\\\delta>0$ such that for any constant\\n$0<\\\\epsilon\\\\leq \\\\frac{1}{2}$ and any computable function $f$, there is no\\n$(\\\\frac{1}{2}+\\\\epsilon)$-approx in $f(k)\\\\cdot n^{\\\\delta\\\\cdot k}$ time. We\\nfurther strengthen our results as follows: Directed: Inapprox lower bound for\\nedge-disjoint (resp. vertex-disjoint) paths holds even if the input graph is a\\nplanar (resp. 1-planar) DAG with max in-degree and max out-degree at most $2$.\\nUndirected: Inapprox lower bound for edge-disjoint (resp. vertex-disjoint)\\npaths hold even if the input graph is planar (resp. 1-planar) and has max\\ndegree $4$.\",\"PeriodicalId\":501525,\"journal\":{\"name\":\"arXiv - CS - Data Structures and Algorithms\",\"volume\":\"59 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Data Structures and Algorithms\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.03933\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Data Structures and Algorithms","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.03933","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

给定一个图$G=(V,E)$和一个$T={ (s_i, t_i) : 1\leq i\leq k\}\subseteq V\times V$ 的$k$对,$k$-顶点-相邻路径(resp.$k$-edge-disjoint-paths 问题要求确定在$G$中是否存在~$k$对顶点相交(或边相交)的路径 $P_1,P_2,...,P_k$,这样,对于每个$1\leq i\leq k$,$P_i$连接$s_i$和$t_i$。由于罗伯逊和西摩的图小论,无向图中的边相交和顶点相交版本都是著名的 FPT(以 $k$ 为参数)。Eilam-Tzoreff [DAM `98]提出了一个变种,称为"$k$-分叉-最短路径问题",其中进一步要求每条路径都是连接其一对的最短路径。他们的研究表明,在有向图和无向图上,$k$-相交-最短路径问题都是 NP-完全的;即使图是平面的,并且有单位边长,这个问题也是成立的。基于 Chitnis [SIDMA `23]对平面 DAG 上 $k$-edge-disjoint-paths 的还原,我们得到了 $n$-vertex 图上 $k$-disjoint-shortest-paths 的四个版本中每个版本的以下不可逼近性下界:- 在Gap-ETH条件下,存在一个常量$\delta>0$,使得对于任何常量$0<\epsilon\leq \frac{1}{2}$和任何可计算函数$f$,在$f(k)\cdot n^{\delta\cdot k}$时间内没有$(\frac{1}{2}+\epsilon)$-可近似性。我们将进一步强化我们的结果如下:定向即使输入图是平面(1-planar)DAG,且最大入度和最大出度最多为 $2$,边缘相交(或顶点相交)路径的非近似下界仍然成立:即使输入图是平面(或 1-平面)且最大度为 $4$,边不相交(或顶点不相交)路径的非近似下界也成立。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Lower Bounds for Approximate (& Exact) k-Disjoint-Shortest-Paths
Given a graph $G=(V,E)$ and a set $T=\{ (s_i, t_i) : 1\leq i\leq k \}\subseteq V\times V$ of $k$ pairs, the $k$-vertex-disjoint-paths (resp. $k$-edge-disjoint-paths) problem asks to determine whether there exist~$k$ pairwise vertex-disjoint (resp. edge-disjoint) paths $P_1, P_2, ..., P_k$ in $G$ such that, for each $1\leq i\leq k$, $P_i$ connects $s_i$ to $t_i$. Both the edge-disjoint and vertex-disjoint versions in undirected graphs are famously known to be FPT (parameterized by $k$) due to the Graph Minor Theory of Robertson and Seymour. Eilam-Tzoreff [DAM `98] introduced a variant, known as the $k$-disjoint-shortest-paths problem, where each individual path is further required to be a shortest path connecting its pair. They showed that the $k$-disjoint-shortest-paths problem is NP-complete on both directed and undirected graphs; this holds even if the graphs are planar and have unit edge lengths. We focus on four versions of the problem, corresponding to considering edge/vertex disjointness, and to considering directed/undirected graphs. Building on the reduction of Chitnis [SIDMA `23] for $k$-edge-disjoint-paths on planar DAGs, we obtain the following inapproximability lower bound for each of the four versions of $k$-disjoint-shortest-paths on $n$-vertex graphs: - Under Gap-ETH, there exists a constant $\delta>0$ such that for any constant $0<\epsilon\leq \frac{1}{2}$ and any computable function $f$, there is no $(\frac{1}{2}+\epsilon)$-approx in $f(k)\cdot n^{\delta\cdot k}$ time. We further strengthen our results as follows: Directed: Inapprox lower bound for edge-disjoint (resp. vertex-disjoint) paths holds even if the input graph is a planar (resp. 1-planar) DAG with max in-degree and max out-degree at most $2$. Undirected: Inapprox lower bound for edge-disjoint (resp. vertex-disjoint) paths hold even if the input graph is planar (resp. 1-planar) and has max degree $4$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信