Travis Gagie, Giovanni Manzini, Gonzalo Navarro, Marinella Sciortino
{"title":"移动树木","authors":"Travis Gagie, Giovanni Manzini, Gonzalo Navarro, Marinella Sciortino","doi":"arxiv-2408.04537","DOIUrl":null,"url":null,"abstract":"We combine Nishimoto and Tabei's move structure with a wavelet tree to show\nhow, if $T [1..n]$ is over a constant-sized alphabet and its Burrows-Wheeler\nTransform (BWT) consists of $r$ runs, then we can store $T$ in $O \\left( r \\log\n\\frac{n}{r} \\right)$ bits such that when given a pattern $P [1..m]$, we can\nfind the BWT interval for $P$ in $O (m)$ time.","PeriodicalId":501525,"journal":{"name":"arXiv - CS - Data Structures and Algorithms","volume":"86 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Movelet Trees\",\"authors\":\"Travis Gagie, Giovanni Manzini, Gonzalo Navarro, Marinella Sciortino\",\"doi\":\"arxiv-2408.04537\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We combine Nishimoto and Tabei's move structure with a wavelet tree to show\\nhow, if $T [1..n]$ is over a constant-sized alphabet and its Burrows-Wheeler\\nTransform (BWT) consists of $r$ runs, then we can store $T$ in $O \\\\left( r \\\\log\\n\\\\frac{n}{r} \\\\right)$ bits such that when given a pattern $P [1..m]$, we can\\nfind the BWT interval for $P$ in $O (m)$ time.\",\"PeriodicalId\":501525,\"journal\":{\"name\":\"arXiv - CS - Data Structures and Algorithms\",\"volume\":\"86 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Data Structures and Algorithms\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.04537\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Data Structures and Algorithms","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.04537","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We combine Nishimoto and Tabei's move structure with a wavelet tree to show
how, if $T [1..n]$ is over a constant-sized alphabet and its Burrows-Wheeler
Transform (BWT) consists of $r$ runs, then we can store $T$ in $O \left( r \log
\frac{n}{r} \right)$ bits such that when given a pattern $P [1..m]$, we can
find the BWT interval for $P$ in $O (m)$ time.