移动树木

Travis Gagie, Giovanni Manzini, Gonzalo Navarro, Marinella Sciortino
{"title":"移动树木","authors":"Travis Gagie, Giovanni Manzini, Gonzalo Navarro, Marinella Sciortino","doi":"arxiv-2408.04537","DOIUrl":null,"url":null,"abstract":"We combine Nishimoto and Tabei's move structure with a wavelet tree to show\nhow, if $T [1..n]$ is over a constant-sized alphabet and its Burrows-Wheeler\nTransform (BWT) consists of $r$ runs, then we can store $T$ in $O \\left( r \\log\n\\frac{n}{r} \\right)$ bits such that when given a pattern $P [1..m]$, we can\nfind the BWT interval for $P$ in $O (m)$ time.","PeriodicalId":501525,"journal":{"name":"arXiv - CS - Data Structures and Algorithms","volume":"86 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Movelet Trees\",\"authors\":\"Travis Gagie, Giovanni Manzini, Gonzalo Navarro, Marinella Sciortino\",\"doi\":\"arxiv-2408.04537\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We combine Nishimoto and Tabei's move structure with a wavelet tree to show\\nhow, if $T [1..n]$ is over a constant-sized alphabet and its Burrows-Wheeler\\nTransform (BWT) consists of $r$ runs, then we can store $T$ in $O \\\\left( r \\\\log\\n\\\\frac{n}{r} \\\\right)$ bits such that when given a pattern $P [1..m]$, we can\\nfind the BWT interval for $P$ in $O (m)$ time.\",\"PeriodicalId\":501525,\"journal\":{\"name\":\"arXiv - CS - Data Structures and Algorithms\",\"volume\":\"86 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Data Structures and Algorithms\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.04537\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Data Structures and Algorithms","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.04537","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们将 Nishimoto 和 Tabei 的移动结构与小波树结合起来,说明如果 $T [1...n]$ 是在一个恒定大小的字母表上,并且其 Burrows-WheelerTransform (BWT) 包含 $r$ 运行,那么我们可以用 $O \left( r \log\frac{n}{r} \right)$ 位来存储 $T$,这样当给定一个模式 $P [1...m]$ 时,我们可以在 $O (m)$ 时间内找到 $P$ 的 BWT 间隔。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Movelet Trees
We combine Nishimoto and Tabei's move structure with a wavelet tree to show how, if $T [1..n]$ is over a constant-sized alphabet and its Burrows-Wheeler Transform (BWT) consists of $r$ runs, then we can store $T$ in $O \left( r \log \frac{n}{r} \right)$ bits such that when given a pattern $P [1..m]$, we can find the BWT interval for $P$ in $O (m)$ time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信