通过最短彩色周期寻找更长周期

Andreas Björklund, Thore Husfeldt
{"title":"通过最短彩色周期寻找更长周期","authors":"Andreas Björklund, Thore Husfeldt","doi":"arxiv-2408.03699","DOIUrl":null,"url":null,"abstract":"We consider the parameterised $k,e$-Long Cycle problem, in which you are\ngiven an $n$-vertex undirected graph $G$, a specified edge $e$ in $G$, and a\npositive integer $k$, and are asked to decide if the graph $G$ has a simple\ncycle through $e$ of length at least $k$. We show that the problem can be\nsolved in $1.731^k\\operatorname{poly}(n)$ time, improving over the previously\nbest known $2^k\\operatorname{poly}(n)$ time algorithm and solving an open\nproblem [Fomin et al., TALG 2024]. When the graph is bipartite, we can solve\nthe problem in $2^{k/2}\\operatorname{poly}(n)$ time, matching the fastest known\nalgorithm for finding a cycle of length exactly $k$ in an undirected bipartite\ngraph [Bj\\\"orklund et al., JCSS 2017]. Our results follow the approach taken by [Fomin et al., TALG 2024], which\ndescribes an efficient algorithm for finding cycles using many colours in a\nvertex-coloured undirected graph. Our contribution is twofold. First, we\ndescribe a new algorithm and analysis for the central colourful cycle problem,\nwith the aim of providing a comparatively short and self-contained proof of\ncorrectness. Second, we give tighter reductions from $k,e$-Long Cycle to the\ncolourful cycle problem, which lead to our improved running times.","PeriodicalId":501525,"journal":{"name":"arXiv - CS - Data Structures and Algorithms","volume":"4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Finding longer cycles via shortest colourful cycle\",\"authors\":\"Andreas Björklund, Thore Husfeldt\",\"doi\":\"arxiv-2408.03699\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the parameterised $k,e$-Long Cycle problem, in which you are\\ngiven an $n$-vertex undirected graph $G$, a specified edge $e$ in $G$, and a\\npositive integer $k$, and are asked to decide if the graph $G$ has a simple\\ncycle through $e$ of length at least $k$. We show that the problem can be\\nsolved in $1.731^k\\\\operatorname{poly}(n)$ time, improving over the previously\\nbest known $2^k\\\\operatorname{poly}(n)$ time algorithm and solving an open\\nproblem [Fomin et al., TALG 2024]. When the graph is bipartite, we can solve\\nthe problem in $2^{k/2}\\\\operatorname{poly}(n)$ time, matching the fastest known\\nalgorithm for finding a cycle of length exactly $k$ in an undirected bipartite\\ngraph [Bj\\\\\\\"orklund et al., JCSS 2017]. Our results follow the approach taken by [Fomin et al., TALG 2024], which\\ndescribes an efficient algorithm for finding cycles using many colours in a\\nvertex-coloured undirected graph. Our contribution is twofold. First, we\\ndescribe a new algorithm and analysis for the central colourful cycle problem,\\nwith the aim of providing a comparatively short and self-contained proof of\\ncorrectness. Second, we give tighter reductions from $k,e$-Long Cycle to the\\ncolourful cycle problem, which lead to our improved running times.\",\"PeriodicalId\":501525,\"journal\":{\"name\":\"arXiv - CS - Data Structures and Algorithms\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Data Structures and Algorithms\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.03699\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Data Structures and Algorithms","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.03699","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑了参数化的 $k,e$ 长循环问题,即给定一个 $n$ 有顶点的无向图 $G$、$G$ 中的指定边 $e$,以及一个正整数 $k$,并要求判断图 $G$ 是否有一个长度至少为 $k$ 的简单循环穿过 $e$。我们证明这个问题可以在 1.731^k/operatorname{poly}(n)$ 时间内解决,比之前已知的最佳算法 2^k/operatorname{poly}(n)$ 时间有所改进,并解决了一个开放问题 [Fomin 等人,TALG 2024]。当图是双向图时,我们可以在 2^{k/2}\operatorname{poly}(n)$ 时间内解决这个问题,与在无向双向图中寻找长度正好为 $k$ 的循环的已知最快算法相匹配 [Bj\"orklund et al., JCSS 2017]。我们的结果沿用了 [Fomin 等人,TALG 2024]的方法,该方法描述了一种在平均顶点着色的无向图中使用多种颜色寻找循环的高效算法。我们的贡献有两方面。首先,我们为中心彩色循环问题描述了一种新算法和分析,目的是提供相对简短和自足的正确性证明。其次,我们给出了从$k,e$长循环到多彩循环问题的更严格的还原,从而改进了运行时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Finding longer cycles via shortest colourful cycle
We consider the parameterised $k,e$-Long Cycle problem, in which you are given an $n$-vertex undirected graph $G$, a specified edge $e$ in $G$, and a positive integer $k$, and are asked to decide if the graph $G$ has a simple cycle through $e$ of length at least $k$. We show that the problem can be solved in $1.731^k\operatorname{poly}(n)$ time, improving over the previously best known $2^k\operatorname{poly}(n)$ time algorithm and solving an open problem [Fomin et al., TALG 2024]. When the graph is bipartite, we can solve the problem in $2^{k/2}\operatorname{poly}(n)$ time, matching the fastest known algorithm for finding a cycle of length exactly $k$ in an undirected bipartite graph [Bj\"orklund et al., JCSS 2017]. Our results follow the approach taken by [Fomin et al., TALG 2024], which describes an efficient algorithm for finding cycles using many colours in a vertex-coloured undirected graph. Our contribution is twofold. First, we describe a new algorithm and analysis for the central colourful cycle problem, with the aim of providing a comparatively short and self-contained proof of correctness. Second, we give tighter reductions from $k,e$-Long Cycle to the colourful cycle problem, which lead to our improved running times.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信