简单线性时重复因式分解

Yuki Yonemoto, Shunsuke Inenaga
{"title":"简单线性时重复因式分解","authors":"Yuki Yonemoto, Shunsuke Inenaga","doi":"arxiv-2408.04253","DOIUrl":null,"url":null,"abstract":"A factorization $f_1, \\ldots, f_m$ of a string $w$ of length $n$ is called a\nrepetition factorization of $w$ if $f_i$ is a repetition, i.e., $f_i$ is a form\nof $x^kx'$, where $x$ is a non-empty string, $x'$ is a (possibly-empty) proper\nprefix of $x$, and $k \\geq 2$. Dumitran et al. [SPIRE 2015] presented an\n$O(n)$-time and space algorithm for computing an arbitrary repetition\nfactorization of a given string of length $n$. Their algorithm heavily relies\non the Union-Find data structure on trees proposed by Gabow and Tarjan [JCSS\n1985] that works in linear time on the word RAM model, and an interval stabbing\ndata structure of Schmidt [ISAAC 2009]. In this paper, we explore more\ncombinatorial insights into the problem, and present a simple algorithm to\ncompute an arbitrary repetition factorization of a given string of length $n$\nin $O(n)$ time, without relying on data structures for Union-Find and interval\nstabbing. Our algorithm follows the approach by Inoue et al. [ToCS 2022] that\ncomputes the smallest/largest repetition factorization in $O(n \\log n)$ time.","PeriodicalId":501525,"journal":{"name":"arXiv - CS - Data Structures and Algorithms","volume":"11 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simple Linear-time Repetition Factorization\",\"authors\":\"Yuki Yonemoto, Shunsuke Inenaga\",\"doi\":\"arxiv-2408.04253\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A factorization $f_1, \\\\ldots, f_m$ of a string $w$ of length $n$ is called a\\nrepetition factorization of $w$ if $f_i$ is a repetition, i.e., $f_i$ is a form\\nof $x^kx'$, where $x$ is a non-empty string, $x'$ is a (possibly-empty) proper\\nprefix of $x$, and $k \\\\geq 2$. Dumitran et al. [SPIRE 2015] presented an\\n$O(n)$-time and space algorithm for computing an arbitrary repetition\\nfactorization of a given string of length $n$. Their algorithm heavily relies\\non the Union-Find data structure on trees proposed by Gabow and Tarjan [JCSS\\n1985] that works in linear time on the word RAM model, and an interval stabbing\\ndata structure of Schmidt [ISAAC 2009]. In this paper, we explore more\\ncombinatorial insights into the problem, and present a simple algorithm to\\ncompute an arbitrary repetition factorization of a given string of length $n$\\nin $O(n)$ time, without relying on data structures for Union-Find and interval\\nstabbing. Our algorithm follows the approach by Inoue et al. [ToCS 2022] that\\ncomputes the smallest/largest repetition factorization in $O(n \\\\log n)$ time.\",\"PeriodicalId\":501525,\"journal\":{\"name\":\"arXiv - CS - Data Structures and Algorithms\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Data Structures and Algorithms\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.04253\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Data Structures and Algorithms","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.04253","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

长度为$n$的字符串$w$的因式分解$f_1, \ldots, f_m$,如果$f_i$是重复,即$f_i$是$x^kx'$的形式,其中$x$是非空字符串,$x'$是$x$的(可能为空)前缀,且$k \geq 2$,则该因式分解称为$w$的重复因式分解。Dumitran 等人[SPIRE 2015]提出了一种计算长度为 $n$ 的给定字符串的任意重复因子化的 $O(n)$ 时间和空间算法。他们的算法在很大程度上依赖于 Gabow 和 Tarjan [JCSS1985]提出的在字 RAM 模型上以线性时间工作的树上 Union-Find 数据结构,以及 Schmidt [ISAAC 2009] 提出的区间 stabbingdata 结构。在本文中,我们探讨了对这一问题的更多联合见解,并提出了一种简单算法,可以在 $O(n)$ 时间内计算长度为 $n$ 的给定字符串的任意重复因式分解,而无需依赖联合查找和区间刺杀的数据结构。我们的算法沿用了 Inoue 等人[ToCS 2022]的方法,即在 $O(n \log n)$ 时间内计算最小/最大的重复因式分解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Simple Linear-time Repetition Factorization
A factorization $f_1, \ldots, f_m$ of a string $w$ of length $n$ is called a repetition factorization of $w$ if $f_i$ is a repetition, i.e., $f_i$ is a form of $x^kx'$, where $x$ is a non-empty string, $x'$ is a (possibly-empty) proper prefix of $x$, and $k \geq 2$. Dumitran et al. [SPIRE 2015] presented an $O(n)$-time and space algorithm for computing an arbitrary repetition factorization of a given string of length $n$. Their algorithm heavily relies on the Union-Find data structure on trees proposed by Gabow and Tarjan [JCSS 1985] that works in linear time on the word RAM model, and an interval stabbing data structure of Schmidt [ISAAC 2009]. In this paper, we explore more combinatorial insights into the problem, and present a simple algorithm to compute an arbitrary repetition factorization of a given string of length $n$ in $O(n)$ time, without relying on data structures for Union-Find and interval stabbing. Our algorithm follows the approach by Inoue et al. [ToCS 2022] that computes the smallest/largest repetition factorization in $O(n \log n)$ time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信