统一度量图

David A. Herron
{"title":"统一度量图","authors":"David A. Herron","doi":"10.1007/s12220-024-01735-1","DOIUrl":null,"url":null,"abstract":"<p>We prove that every complete metric space “is” the boundary of a uniform length space whose quasihyperbolization is a geodesic visual Gromov hyperbolic space. There is a natural quasimöbius identification of the original space’s conformal gauge with the canonical gauge on the Gromov boundary. All parameters are absolute constants.</p>","PeriodicalId":501200,"journal":{"name":"The Journal of Geometric Analysis","volume":"30 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Uniform Metric Graphs\",\"authors\":\"David A. Herron\",\"doi\":\"10.1007/s12220-024-01735-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We prove that every complete metric space “is” the boundary of a uniform length space whose quasihyperbolization is a geodesic visual Gromov hyperbolic space. There is a natural quasimöbius identification of the original space’s conformal gauge with the canonical gauge on the Gromov boundary. All parameters are absolute constants.</p>\",\"PeriodicalId\":501200,\"journal\":{\"name\":\"The Journal of Geometric Analysis\",\"volume\":\"30 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Geometric Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s12220-024-01735-1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Geometric Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12220-024-01735-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们证明,每一个完整度量空间都 "是 "均匀长度空间的边界,而均匀长度空间的准超边界化是一个大地视觉格罗莫夫双曲空间。原始空间的共形轨距与格罗莫夫边界上的典型轨距存在着自然的类莫比乌斯识别。所有参数都是绝对常数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Uniform Metric Graphs

Uniform Metric Graphs

We prove that every complete metric space “is” the boundary of a uniform length space whose quasihyperbolization is a geodesic visual Gromov hyperbolic space. There is a natural quasimöbius identification of the original space’s conformal gauge with the canonical gauge on the Gromov boundary. All parameters are absolute constants.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信