{"title":"1 次谐函数的最小层叠和水平集","authors":"Aidan Backus","doi":"10.1007/s12220-024-01758-8","DOIUrl":null,"url":null,"abstract":"<p>We collect several results concerning regularity of minimal laminations, and governing the various modes of convergence for sequences of minimal laminations. We then apply this theory to prove that a function has locally least gradient (is 1-harmonic) iff its level sets are a minimal lamination; this resolves an open problem of Daskalopoulos and Uhlenbeck.</p>","PeriodicalId":501200,"journal":{"name":"The Journal of Geometric Analysis","volume":"2 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Minimal Laminations and Level Sets of 1-Harmonic Functions\",\"authors\":\"Aidan Backus\",\"doi\":\"10.1007/s12220-024-01758-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We collect several results concerning regularity of minimal laminations, and governing the various modes of convergence for sequences of minimal laminations. We then apply this theory to prove that a function has locally least gradient (is 1-harmonic) iff its level sets are a minimal lamination; this resolves an open problem of Daskalopoulos and Uhlenbeck.</p>\",\"PeriodicalId\":501200,\"journal\":{\"name\":\"The Journal of Geometric Analysis\",\"volume\":\"2 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Geometric Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s12220-024-01758-8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Geometric Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12220-024-01758-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Minimal Laminations and Level Sets of 1-Harmonic Functions
We collect several results concerning regularity of minimal laminations, and governing the various modes of convergence for sequences of minimal laminations. We then apply this theory to prove that a function has locally least gradient (is 1-harmonic) iff its level sets are a minimal lamination; this resolves an open problem of Daskalopoulos and Uhlenbeck.