广义二元闵科夫斯基问题的解的存在性

Mingyang Li, YanNan Liu, Jian Lu
{"title":"广义二元闵科夫斯基问题的解的存在性","authors":"Mingyang Li, YanNan Liu, Jian Lu","doi":"10.1007/s12220-024-01754-y","DOIUrl":null,"url":null,"abstract":"<p>Given a real number <i>q</i> and a star body in the <i>n</i>-dimensional Euclidean space, the generalized dual curvature measure of a convex body was introduced by Lutwak et al. (Adv Math 329:85–132, 2018). The corresponding generalized dual Minkowski problem is studied in this paper. By using variational methods, we solve the generalized dual Minkowski problem for <span>\\(q&lt;0\\)</span>, and the even generalized dual Minkowski problem for <span>\\(0\\le q\\le 1\\)</span>. We also obtain a sufficient condition for the existence of solutions to the even generalized dual Minkowski problem for <span>\\(1&lt;q&lt;n\\)</span>.</p>","PeriodicalId":501200,"journal":{"name":"The Journal of Geometric Analysis","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Existence of Solutions to the Generalized Dual Minkowski Problem\",\"authors\":\"Mingyang Li, YanNan Liu, Jian Lu\",\"doi\":\"10.1007/s12220-024-01754-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Given a real number <i>q</i> and a star body in the <i>n</i>-dimensional Euclidean space, the generalized dual curvature measure of a convex body was introduced by Lutwak et al. (Adv Math 329:85–132, 2018). The corresponding generalized dual Minkowski problem is studied in this paper. By using variational methods, we solve the generalized dual Minkowski problem for <span>\\\\(q&lt;0\\\\)</span>, and the even generalized dual Minkowski problem for <span>\\\\(0\\\\le q\\\\le 1\\\\)</span>. We also obtain a sufficient condition for the existence of solutions to the even generalized dual Minkowski problem for <span>\\\\(1&lt;q&lt;n\\\\)</span>.</p>\",\"PeriodicalId\":501200,\"journal\":{\"name\":\"The Journal of Geometric Analysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Geometric Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s12220-024-01754-y\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Geometric Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12220-024-01754-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

给定实数q和n维欧几里得空间中的星体,Lutwak等人提出了凸体的广义对偶曲率度量(Adv Math 329:85-132, 2018)。本文研究了相应的广义对偶闵科夫斯基问题。通过使用变分法,我们求解了\(q<0\)的广义对偶Minkowski问题,以及\(0\le q\le 1\)的偶数广义对偶Minkowski问题。我们还得到了求解\(1<q<n\) 的偶数广义对偶 Minkowski 问题的充分条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Existence of Solutions to the Generalized Dual Minkowski Problem

Given a real number q and a star body in the n-dimensional Euclidean space, the generalized dual curvature measure of a convex body was introduced by Lutwak et al. (Adv Math 329:85–132, 2018). The corresponding generalized dual Minkowski problem is studied in this paper. By using variational methods, we solve the generalized dual Minkowski problem for \(q<0\), and the even generalized dual Minkowski problem for \(0\le q\le 1\). We also obtain a sufficient condition for the existence of solutions to the even generalized dual Minkowski problem for \(1<q<n\).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信