多达 414 量子位的超导量子计算机的纠缠特征

John F. Kam, Haiyue Kang, Charles D. Hill, Gary J. Mooney, Lloyd C. L. Hollenberg
{"title":"多达 414 量子位的超导量子计算机的纠缠特征","authors":"John F. Kam, Haiyue Kang, Charles D. Hill, Gary J. Mooney, Lloyd C. L. Hollenberg","doi":"10.1103/physrevresearch.6.033155","DOIUrl":null,"url":null,"abstract":"As quantum technology advances and the size of quantum computers grow, it becomes increasingly important to understand the extent of quality in the devices. As large-scale entanglement is a quantum resource crucial for achieving quantum advantage, the challenge in its generation makes it a valuable benchmark for measuring the performance of universal quantum devices. In this paper, we study entanglement in Greenberger-Horne-Zeilinger (GHZ) and graph states prepared on the range of IBM Quantum devices. We generate GHZ states and investigate their coherence times with respect to state size and dynamical decoupling techniques. A GHZ fidelity of <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mn>0.519</mn><mo>±</mo><mn>0.014</mn></mrow></math> is measured on a 32-qubit GHZ state, certifying its genuine multipartite entanglement (GME). We show a substantial improvement in GHZ decoherence rates for a seven-qubit GHZ state after implementing dynamical decoupling, and observe a linear trend in the decoherence rate of <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi>α</mi><mo>=</mo><mrow><mo>(</mo><mn>7.13</mn><mi>N</mi><mo>+</mo><mn>5.54</mn><mo>)</mo></mrow><mo>×</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>3</mn></mrow></msup><mspace width=\"0.16em\"></mspace><mi>µ</mi><msup><mrow><mi mathvariant=\"normal\">s</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></mrow></math> for up to <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi>N</mi><mo>=</mo><mn>15</mn></mrow></math> qubits, confirming the absence of superdecoherence. Additionally, we prepare and characterize fully bipartite entangled native-graph states on 22 superconducting quantum devices with qubit counts as high as 414 qubits, all active qubits of the 433-qubit IBM Osprey device. Analysis of the decay of two-qubit entanglement within the prepared states shows suppression of coherent noise signals with the implementation of dynamical decoupling techniques. Additionally, we observe that the entanglement in some qubit pairs oscillates over time, which is likely caused by residual ZZ-interactions. Characterizing entanglement in native-graph states, along with detecting entanglement oscillations, can be an effective approach to low-level device benchmarking that encapsulates two-qubit error rates along with additional sources of noise, with possible applications to quantum circuit compilation. We develop several tools to automate the preparation and entanglement characterization of GHZ and graph states. In particular, a method to characterize graph state bipartite entanglement using just 36 circuits, constant with respect to the number of qubits.","PeriodicalId":20546,"journal":{"name":"Physical Review Research","volume":"41 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Characterization of entanglement on superconducting quantum computers of up to 414 qubits\",\"authors\":\"John F. Kam, Haiyue Kang, Charles D. Hill, Gary J. Mooney, Lloyd C. L. Hollenberg\",\"doi\":\"10.1103/physrevresearch.6.033155\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As quantum technology advances and the size of quantum computers grow, it becomes increasingly important to understand the extent of quality in the devices. As large-scale entanglement is a quantum resource crucial for achieving quantum advantage, the challenge in its generation makes it a valuable benchmark for measuring the performance of universal quantum devices. In this paper, we study entanglement in Greenberger-Horne-Zeilinger (GHZ) and graph states prepared on the range of IBM Quantum devices. We generate GHZ states and investigate their coherence times with respect to state size and dynamical decoupling techniques. A GHZ fidelity of <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mn>0.519</mn><mo>±</mo><mn>0.014</mn></mrow></math> is measured on a 32-qubit GHZ state, certifying its genuine multipartite entanglement (GME). We show a substantial improvement in GHZ decoherence rates for a seven-qubit GHZ state after implementing dynamical decoupling, and observe a linear trend in the decoherence rate of <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mi>α</mi><mo>=</mo><mrow><mo>(</mo><mn>7.13</mn><mi>N</mi><mo>+</mo><mn>5.54</mn><mo>)</mo></mrow><mo>×</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>3</mn></mrow></msup><mspace width=\\\"0.16em\\\"></mspace><mi>µ</mi><msup><mrow><mi mathvariant=\\\"normal\\\">s</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></mrow></math> for up to <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mi>N</mi><mo>=</mo><mn>15</mn></mrow></math> qubits, confirming the absence of superdecoherence. Additionally, we prepare and characterize fully bipartite entangled native-graph states on 22 superconducting quantum devices with qubit counts as high as 414 qubits, all active qubits of the 433-qubit IBM Osprey device. Analysis of the decay of two-qubit entanglement within the prepared states shows suppression of coherent noise signals with the implementation of dynamical decoupling techniques. Additionally, we observe that the entanglement in some qubit pairs oscillates over time, which is likely caused by residual ZZ-interactions. Characterizing entanglement in native-graph states, along with detecting entanglement oscillations, can be an effective approach to low-level device benchmarking that encapsulates two-qubit error rates along with additional sources of noise, with possible applications to quantum circuit compilation. We develop several tools to automate the preparation and entanglement characterization of GHZ and graph states. In particular, a method to characterize graph state bipartite entanglement using just 36 circuits, constant with respect to the number of qubits.\",\"PeriodicalId\":20546,\"journal\":{\"name\":\"Physical Review Research\",\"volume\":\"41 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevresearch.6.033155\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/physrevresearch.6.033155","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

随着量子技术的发展和量子计算机规模的扩大,了解设备的质量程度变得越来越重要。由于大规模纠缠是实现量子优势的关键量子资源,其产生所面临的挑战使其成为衡量通用量子设备性能的宝贵基准。在本文中,我们研究了格林伯格-霍恩-蔡林格(Greenberger-Horne-Zeilinger,GHZ)态中的纠缠以及在一系列 IBM 量子设备上制备的图态。我们生成 GHZ 状态,并研究其相干时间与状态大小和动态解耦技术的关系。在一个 32 量子位的 GHZ 状态上测得的 GHZ 保真度为 0.519±0.014,证明了其真正的多方纠缠(GME)。在实现动态解耦之后,我们发现七量子比特 GHZ 状态的 GHZ 退相干速率有了大幅提高,并观察到在 N=15 量子比特时,退相干速率呈线性趋势,即 α=(7.13N+5.54)×10-3µs-1,从而证实不存在超脱相干。此外,我们还在 22 个超导量子器件上制备并描述了完全双向纠缠的本图态,其量子比特数高达 414 量子比特,是 433 量子比特 IBM Osprey 器件的所有有源量子比特。对制备态内双量子比特纠缠衰减的分析表明,采用动态解耦技术可以抑制相干噪声信号。此外,我们还观察到一些量子比特对中的纠缠随时间发生振荡,这很可能是由残余的 ZZ 相互作用引起的。描述原生图状态中的纠缠以及检测纠缠振荡,可以成为一种有效的低级设备基准测试方法,它可以囊括双量子比特误差率以及其他噪声源,并有可能应用于量子电路编译。我们开发了几种工具来自动准备和表征 GHZ 和图状态的纠缠。特别是一种仅用 36 个电路(与量子比特数有关的常数)就能表征图态双方位纠缠的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Characterization of entanglement on superconducting quantum computers of up to 414 qubits

Characterization of entanglement on superconducting quantum computers of up to 414 qubits
As quantum technology advances and the size of quantum computers grow, it becomes increasingly important to understand the extent of quality in the devices. As large-scale entanglement is a quantum resource crucial for achieving quantum advantage, the challenge in its generation makes it a valuable benchmark for measuring the performance of universal quantum devices. In this paper, we study entanglement in Greenberger-Horne-Zeilinger (GHZ) and graph states prepared on the range of IBM Quantum devices. We generate GHZ states and investigate their coherence times with respect to state size and dynamical decoupling techniques. A GHZ fidelity of 0.519±0.014 is measured on a 32-qubit GHZ state, certifying its genuine multipartite entanglement (GME). We show a substantial improvement in GHZ decoherence rates for a seven-qubit GHZ state after implementing dynamical decoupling, and observe a linear trend in the decoherence rate of α=(7.13N+5.54)×103µs1 for up to N=15 qubits, confirming the absence of superdecoherence. Additionally, we prepare and characterize fully bipartite entangled native-graph states on 22 superconducting quantum devices with qubit counts as high as 414 qubits, all active qubits of the 433-qubit IBM Osprey device. Analysis of the decay of two-qubit entanglement within the prepared states shows suppression of coherent noise signals with the implementation of dynamical decoupling techniques. Additionally, we observe that the entanglement in some qubit pairs oscillates over time, which is likely caused by residual ZZ-interactions. Characterizing entanglement in native-graph states, along with detecting entanglement oscillations, can be an effective approach to low-level device benchmarking that encapsulates two-qubit error rates along with additional sources of noise, with possible applications to quantum circuit compilation. We develop several tools to automate the preparation and entanglement characterization of GHZ and graph states. In particular, a method to characterize graph state bipartite entanglement using just 36 circuits, constant with respect to the number of qubits.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信