在不可压缩地球物理流中恢复块边对应关系

Yohei Onuki, Antoine Venaille, Pierre Delplace
{"title":"在不可压缩地球物理流中恢复块边对应关系","authors":"Yohei Onuki, Antoine Venaille, Pierre Delplace","doi":"10.1103/physrevresearch.6.033161","DOIUrl":null,"url":null,"abstract":"Bulk-edge correspondence is a cornerstone in topological physics, establishing a connection between the number of unidirectional edge modes in physical space and a Chern number, an integer that counts phase singularities of the eigenmodes in parameter space. In continuous media, violation of this correspondence has been reported when some of the frequency wave bands are unbounded, resulting in weak topological protection of chiral edge states. Here, we propose a strategy to reestablish strong bulk-edge correspondence in incompressible rotating stratified flows, taking advantage of a natural cutoff frequency provided by density stratification. The key idea involves the introduction of an auxiliary field to handle the divergence-free constraint. This approach highlights the resilience of internal coastal Kelvin waves near vertical walls under varying boundary conditions.","PeriodicalId":20546,"journal":{"name":"Physical Review Research","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bulk-edge correspondence recovered in incompressible geophysical flows\",\"authors\":\"Yohei Onuki, Antoine Venaille, Pierre Delplace\",\"doi\":\"10.1103/physrevresearch.6.033161\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Bulk-edge correspondence is a cornerstone in topological physics, establishing a connection between the number of unidirectional edge modes in physical space and a Chern number, an integer that counts phase singularities of the eigenmodes in parameter space. In continuous media, violation of this correspondence has been reported when some of the frequency wave bands are unbounded, resulting in weak topological protection of chiral edge states. Here, we propose a strategy to reestablish strong bulk-edge correspondence in incompressible rotating stratified flows, taking advantage of a natural cutoff frequency provided by density stratification. The key idea involves the introduction of an auxiliary field to handle the divergence-free constraint. This approach highlights the resilience of internal coastal Kelvin waves near vertical walls under varying boundary conditions.\",\"PeriodicalId\":20546,\"journal\":{\"name\":\"Physical Review Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevresearch.6.033161\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/physrevresearch.6.033161","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

块边对应是拓扑物理学的基石,它建立了物理空间中单向边模的数量与切尔数之间的联系,切尔数是一个整数,用来计算参数空间中特征模的相位奇异性。据报道,在连续介质中,当某些频率波段无界时,这种对应关系就会遭到破坏,导致手性边缘态的拓扑保护减弱。在这里,我们提出了一种策略,利用密度分层提供的自然截止频率,在不可压缩旋转分层流中重建强体边对应关系。其关键思路是引入一个辅助场来处理无发散约束。这种方法强调了在不同边界条件下垂直壁附近的内部沿岸开尔文波的弹性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Bulk-edge correspondence recovered in incompressible geophysical flows

Bulk-edge correspondence recovered in incompressible geophysical flows
Bulk-edge correspondence is a cornerstone in topological physics, establishing a connection between the number of unidirectional edge modes in physical space and a Chern number, an integer that counts phase singularities of the eigenmodes in parameter space. In continuous media, violation of this correspondence has been reported when some of the frequency wave bands are unbounded, resulting in weak topological protection of chiral edge states. Here, we propose a strategy to reestablish strong bulk-edge correspondence in incompressible rotating stratified flows, taking advantage of a natural cutoff frequency provided by density stratification. The key idea involves the introduction of an auxiliary field to handle the divergence-free constraint. This approach highlights the resilience of internal coastal Kelvin waves near vertical walls under varying boundary conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信