Marco Mancastroppa, Alessandro Vezzani, Vittoria Colizza, Raffaella Burioni
{"title":"在自适应时态网络中控制流行病传播的同时保持系统活动","authors":"Marco Mancastroppa, Alessandro Vezzani, Vittoria Colizza, Raffaella Burioni","doi":"10.1103/physrevresearch.6.033159","DOIUrl":null,"url":null,"abstract":"Human behavior strongly influences the spread of infectious diseases: understanding the interplay between epidemic dynamics and adaptive behaviors is essential to improve response strategies to epidemics, with the goal of containing the epidemic while preserving a sufficient level of operativeness in the population. Through activity-driven temporal networks, we formulate a general framework which models a wide range of adaptive behaviors and mitigation strategies, observed in real populations. We analytically derive the conditions for a widespread diffusion of epidemics in the presence of arbitrary adaptive behaviors, highlighting the crucial role of correlations between agents behavior in the infected and in the susceptible state. We focus on the effects of sick leave, comparing the effectiveness of different strategies in reducing the impact of the epidemic and preserving the system operativeness. We show the critical relevance of heterogeneity in individual behavior: in homogeneous networks, all sick-leave strategies are equivalent and poorly effective, while in heterogeneous networks, strategies targeting the most vulnerable nodes are able to effectively mitigate the epidemic, also avoiding a deterioration in system activity and maintaining a low level of absenteeism. Interestingly, with targeted strategies both the minimum of population activity and the maximum of absenteeism anticipate the infection peak, which is effectively flattened and delayed, so that full operativeness is almost restored when the infection peak arrives. We also provide realistic estimates of the model parameters for influenza-like illness, thereby suggesting strategies for managing epidemics and absenteeism in realistic populations.","PeriodicalId":20546,"journal":{"name":"Physical Review Research","volume":"13 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Preserving system activity while controlling epidemic spreading in adaptive temporal networks\",\"authors\":\"Marco Mancastroppa, Alessandro Vezzani, Vittoria Colizza, Raffaella Burioni\",\"doi\":\"10.1103/physrevresearch.6.033159\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Human behavior strongly influences the spread of infectious diseases: understanding the interplay between epidemic dynamics and adaptive behaviors is essential to improve response strategies to epidemics, with the goal of containing the epidemic while preserving a sufficient level of operativeness in the population. Through activity-driven temporal networks, we formulate a general framework which models a wide range of adaptive behaviors and mitigation strategies, observed in real populations. We analytically derive the conditions for a widespread diffusion of epidemics in the presence of arbitrary adaptive behaviors, highlighting the crucial role of correlations between agents behavior in the infected and in the susceptible state. We focus on the effects of sick leave, comparing the effectiveness of different strategies in reducing the impact of the epidemic and preserving the system operativeness. We show the critical relevance of heterogeneity in individual behavior: in homogeneous networks, all sick-leave strategies are equivalent and poorly effective, while in heterogeneous networks, strategies targeting the most vulnerable nodes are able to effectively mitigate the epidemic, also avoiding a deterioration in system activity and maintaining a low level of absenteeism. Interestingly, with targeted strategies both the minimum of population activity and the maximum of absenteeism anticipate the infection peak, which is effectively flattened and delayed, so that full operativeness is almost restored when the infection peak arrives. We also provide realistic estimates of the model parameters for influenza-like illness, thereby suggesting strategies for managing epidemics and absenteeism in realistic populations.\",\"PeriodicalId\":20546,\"journal\":{\"name\":\"Physical Review Research\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevresearch.6.033159\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/physrevresearch.6.033159","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Preserving system activity while controlling epidemic spreading in adaptive temporal networks
Human behavior strongly influences the spread of infectious diseases: understanding the interplay between epidemic dynamics and adaptive behaviors is essential to improve response strategies to epidemics, with the goal of containing the epidemic while preserving a sufficient level of operativeness in the population. Through activity-driven temporal networks, we formulate a general framework which models a wide range of adaptive behaviors and mitigation strategies, observed in real populations. We analytically derive the conditions for a widespread diffusion of epidemics in the presence of arbitrary adaptive behaviors, highlighting the crucial role of correlations between agents behavior in the infected and in the susceptible state. We focus on the effects of sick leave, comparing the effectiveness of different strategies in reducing the impact of the epidemic and preserving the system operativeness. We show the critical relevance of heterogeneity in individual behavior: in homogeneous networks, all sick-leave strategies are equivalent and poorly effective, while in heterogeneous networks, strategies targeting the most vulnerable nodes are able to effectively mitigate the epidemic, also avoiding a deterioration in system activity and maintaining a low level of absenteeism. Interestingly, with targeted strategies both the minimum of population activity and the maximum of absenteeism anticipate the infection peak, which is effectively flattened and delayed, so that full operativeness is almost restored when the infection peak arrives. We also provide realistic estimates of the model parameters for influenza-like illness, thereby suggesting strategies for managing epidemics and absenteeism in realistic populations.