设计和模拟用于未来核聚变应用的可增材制造液态金属热管

IF 1.9 3区 工程技术 Q1 NUCLEAR SCIENCE & TECHNOLOGY
M. Bakker , N. Maassen , L. Kaserer
{"title":"设计和模拟用于未来核聚变应用的可增材制造液态金属热管","authors":"M. Bakker ,&nbsp;N. Maassen ,&nbsp;L. Kaserer","doi":"10.1016/j.fusengdes.2024.114611","DOIUrl":null,"url":null,"abstract":"<div><p>The feasibility of a radiatively cooled 3D-printable liquid metal heat pipe (HP) design is assessed. Using the design flexibility offered by 3D-printing, the design of the wick and geometry of the HP were optimised to meet the requirement of 20 <span><math><mrow><mi>MW</mi><mo>/</mo><msup><mrow><mi>m</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></math></span> heat load for a HP placed in a 1.5 T magnetic field. COMSOL was used to assess the operational limits of the HP, the thermal stresses in the wall, the thermally radiated power, and various materials for the HP. The main parameters are the diameter and spacing of the screen wires and the emissivity, 200 <span><math><mrow><mi>μ</mi><mi>m</mi></mrow></math></span>, 200 <span><math><mrow><mi>μ</mi><mi>m</mi></mrow></math></span> and 0.86 respectively. Molybdenum was chosen as the wall material and lithium as the working fluid. The design was made in Siemens NX and then exported to COMSOL. From simulations it was concluded that a molybdenum HP with the final design was capable of handling a steady state heat load of 20 <span><math><mrow><mi>MW</mi><mo>/</mo><msup><mrow><mi>m</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></math></span>.</p></div>","PeriodicalId":55133,"journal":{"name":"Fusion Engineering and Design","volume":"207 ","pages":"Article 114611"},"PeriodicalIF":1.9000,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0920379624004629/pdfft?md5=7f7f66bbc91f4193b04cdfd244128ba9&pid=1-s2.0-S0920379624004629-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Designing and Simulating an additive manufacturable liquid metal heat pipe for future fusion application\",\"authors\":\"M. Bakker ,&nbsp;N. Maassen ,&nbsp;L. Kaserer\",\"doi\":\"10.1016/j.fusengdes.2024.114611\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The feasibility of a radiatively cooled 3D-printable liquid metal heat pipe (HP) design is assessed. Using the design flexibility offered by 3D-printing, the design of the wick and geometry of the HP were optimised to meet the requirement of 20 <span><math><mrow><mi>MW</mi><mo>/</mo><msup><mrow><mi>m</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></math></span> heat load for a HP placed in a 1.5 T magnetic field. COMSOL was used to assess the operational limits of the HP, the thermal stresses in the wall, the thermally radiated power, and various materials for the HP. The main parameters are the diameter and spacing of the screen wires and the emissivity, 200 <span><math><mrow><mi>μ</mi><mi>m</mi></mrow></math></span>, 200 <span><math><mrow><mi>μ</mi><mi>m</mi></mrow></math></span> and 0.86 respectively. Molybdenum was chosen as the wall material and lithium as the working fluid. The design was made in Siemens NX and then exported to COMSOL. From simulations it was concluded that a molybdenum HP with the final design was capable of handling a steady state heat load of 20 <span><math><mrow><mi>MW</mi><mo>/</mo><msup><mrow><mi>m</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></math></span>.</p></div>\",\"PeriodicalId\":55133,\"journal\":{\"name\":\"Fusion Engineering and Design\",\"volume\":\"207 \",\"pages\":\"Article 114611\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0920379624004629/pdfft?md5=7f7f66bbc91f4193b04cdfd244128ba9&pid=1-s2.0-S0920379624004629-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fusion Engineering and Design\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0920379624004629\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NUCLEAR SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fusion Engineering and Design","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0920379624004629","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

对辐射冷却三维打印液态金属热管(HP)设计的可行性进行了评估。利用三维打印技术提供的设计灵活性,对热管的芯和几何形状进行了优化,以满足在 1.5 T 磁场中放置热管的 20 热负荷要求。COMSOL 用于评估 HP 的工作极限、壁中的热应力、热辐射功率以及 HP 的各种材料。主要参数包括屏蔽线的直径和间距以及发射率,分别为 200、200 和 0.86。壁材料选用钼,工作流体选用锂。设计在西门子 NX 中完成,然后导出到 COMSOL。模拟结果表明,采用最终设计的钼 HP 能够承受稳定状态下 20% 的热负荷。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Designing and Simulating an additive manufacturable liquid metal heat pipe for future fusion application

The feasibility of a radiatively cooled 3D-printable liquid metal heat pipe (HP) design is assessed. Using the design flexibility offered by 3D-printing, the design of the wick and geometry of the HP were optimised to meet the requirement of 20 MW/m2 heat load for a HP placed in a 1.5 T magnetic field. COMSOL was used to assess the operational limits of the HP, the thermal stresses in the wall, the thermally radiated power, and various materials for the HP. The main parameters are the diameter and spacing of the screen wires and the emissivity, 200 μm, 200 μm and 0.86 respectively. Molybdenum was chosen as the wall material and lithium as the working fluid. The design was made in Siemens NX and then exported to COMSOL. From simulations it was concluded that a molybdenum HP with the final design was capable of handling a steady state heat load of 20 MW/m2.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Fusion Engineering and Design
Fusion Engineering and Design 工程技术-核科学技术
CiteScore
3.50
自引率
23.50%
发文量
275
审稿时长
3.8 months
期刊介绍: The journal accepts papers about experiments (both plasma and technology), theory, models, methods, and designs in areas relating to technology, engineering, and applied science aspects of magnetic and inertial fusion energy. Specific areas of interest include: MFE and IFE design studies for experiments and reactors; fusion nuclear technologies and materials, including blankets and shields; analysis of reactor plasmas; plasma heating, fuelling, and vacuum systems; drivers, targets, and special technologies for IFE, controls and diagnostics; fuel cycle analysis and tritium reprocessing and handling; operations and remote maintenance of reactors; safety, decommissioning, and waste management; economic and environmental analysis of components and systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信