Deepak Mudakavi, Karunya G, Patel Varsha, Somashekara M Adinarayanappa
{"title":"用于自主自愈的添加式制造微胶囊增强聚乳酸复合材料的合成与表征","authors":"Deepak Mudakavi, Karunya G, Patel Varsha, Somashekara M Adinarayanappa","doi":"10.1002/pen.26903","DOIUrl":null,"url":null,"abstract":"<jats:label/>Material extrusion‐based additive manufacturing (AM) process builds the objects/structures through a precise feedstock deposition in a layer‐by‐layer manner. Polylactic acid (PLA) is a popular biodegradable feedstock in AM, while octyl methoxycinnamate (OMC) is known for its eco‐friendliness and ultraviolet (UV) protection properties. The present study focuses on the novel infusion methodology of OMC‐based microcapsules into PLA to develop self‐healing composite filaments. Post‐composition iterations, the optimum compositions for the filler and plasticizer were determined, and the filaments were extruded. Microcapsule‐infused PLA and the neat PLA samples were printed as per the American Society for Testing and Materials (ASTM) standard. The uniaxial tensile test results showed that the failure strain endured by the microcapsule‐infused samples was about 10 times more than the neat PLA counterparts. It is attributed to the effective load distribution and the complex polymerization reaction (due to the interaction of OMC with the matrix). Fracture surface morphology of the samples via optical microscopy (OM) and field emission scanning electron microscope (FESEM) affirmed the strong PLA‐OMC interface. A depreciation in the Brinell Hardness for the microcapsule‐based samples was due to the localized indenter force, causing greater damage in a narrow area than microcapsule ruptures' healing ability.Highlights<jats:list list-type=\"bullet\"> <jats:list-item>The optimized composition of PLA: plasticizer:microcapsule is 1:0.04:0.05.</jats:list-item> <jats:list-item>Microcapsule‐infused PLA has improved Young's modulus and failure strain.</jats:list-item> <jats:list-item>Interaction with microcapsules improves elastic behavior and self‐healing.</jats:list-item> <jats:list-item>FESEM reveals close bonding of microcapsule with the PLA matrix.</jats:list-item> </jats:list>","PeriodicalId":20281,"journal":{"name":"Polymer Engineering and Science","volume":"93 1","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesis and characterization of additively manufactured microcapsule‐reinforced polylactic acid composites for autonomous self‐healing\",\"authors\":\"Deepak Mudakavi, Karunya G, Patel Varsha, Somashekara M Adinarayanappa\",\"doi\":\"10.1002/pen.26903\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<jats:label/>Material extrusion‐based additive manufacturing (AM) process builds the objects/structures through a precise feedstock deposition in a layer‐by‐layer manner. Polylactic acid (PLA) is a popular biodegradable feedstock in AM, while octyl methoxycinnamate (OMC) is known for its eco‐friendliness and ultraviolet (UV) protection properties. The present study focuses on the novel infusion methodology of OMC‐based microcapsules into PLA to develop self‐healing composite filaments. Post‐composition iterations, the optimum compositions for the filler and plasticizer were determined, and the filaments were extruded. Microcapsule‐infused PLA and the neat PLA samples were printed as per the American Society for Testing and Materials (ASTM) standard. The uniaxial tensile test results showed that the failure strain endured by the microcapsule‐infused samples was about 10 times more than the neat PLA counterparts. It is attributed to the effective load distribution and the complex polymerization reaction (due to the interaction of OMC with the matrix). Fracture surface morphology of the samples via optical microscopy (OM) and field emission scanning electron microscope (FESEM) affirmed the strong PLA‐OMC interface. A depreciation in the Brinell Hardness for the microcapsule‐based samples was due to the localized indenter force, causing greater damage in a narrow area than microcapsule ruptures' healing ability.Highlights<jats:list list-type=\\\"bullet\\\"> <jats:list-item>The optimized composition of PLA: plasticizer:microcapsule is 1:0.04:0.05.</jats:list-item> <jats:list-item>Microcapsule‐infused PLA has improved Young's modulus and failure strain.</jats:list-item> <jats:list-item>Interaction with microcapsules improves elastic behavior and self‐healing.</jats:list-item> <jats:list-item>FESEM reveals close bonding of microcapsule with the PLA matrix.</jats:list-item> </jats:list>\",\"PeriodicalId\":20281,\"journal\":{\"name\":\"Polymer Engineering and Science\",\"volume\":\"93 1\",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polymer Engineering and Science\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/pen.26903\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer Engineering and Science","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/pen.26903","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Synthesis and characterization of additively manufactured microcapsule‐reinforced polylactic acid composites for autonomous self‐healing
Material extrusion‐based additive manufacturing (AM) process builds the objects/structures through a precise feedstock deposition in a layer‐by‐layer manner. Polylactic acid (PLA) is a popular biodegradable feedstock in AM, while octyl methoxycinnamate (OMC) is known for its eco‐friendliness and ultraviolet (UV) protection properties. The present study focuses on the novel infusion methodology of OMC‐based microcapsules into PLA to develop self‐healing composite filaments. Post‐composition iterations, the optimum compositions for the filler and plasticizer were determined, and the filaments were extruded. Microcapsule‐infused PLA and the neat PLA samples were printed as per the American Society for Testing and Materials (ASTM) standard. The uniaxial tensile test results showed that the failure strain endured by the microcapsule‐infused samples was about 10 times more than the neat PLA counterparts. It is attributed to the effective load distribution and the complex polymerization reaction (due to the interaction of OMC with the matrix). Fracture surface morphology of the samples via optical microscopy (OM) and field emission scanning electron microscope (FESEM) affirmed the strong PLA‐OMC interface. A depreciation in the Brinell Hardness for the microcapsule‐based samples was due to the localized indenter force, causing greater damage in a narrow area than microcapsule ruptures' healing ability.HighlightsThe optimized composition of PLA: plasticizer:microcapsule is 1:0.04:0.05.Microcapsule‐infused PLA has improved Young's modulus and failure strain.Interaction with microcapsules improves elastic behavior and self‐healing.FESEM reveals close bonding of microcapsule with the PLA matrix.
期刊介绍:
For more than 30 years, Polymer Engineering & Science has been one of the most highly regarded journals in the field, serving as a forum for authors of treatises on the cutting edge of polymer science and technology. The importance of PE&S is underscored by the frequent rate at which its articles are cited, especially by other publications - literally thousand of times a year. Engineers, researchers, technicians, and academicians worldwide are looking to PE&S for the valuable information they need. There are special issues compiled by distinguished guest editors. These contain proceedings of symposia on such diverse topics as polyblends, mechanics of plastics and polymer welding.