David O. Kazmer, Sixtus O. Nzeh, Beijun Shen, David C. Elbert, Ramaswamy Nagarajan, Margaret Sobkowicz‐Kline, Thao D. Nguyen
{"title":"工业回收聚烯烃的表征、加工和建模","authors":"David O. Kazmer, Sixtus O. Nzeh, Beijun Shen, David C. Elbert, Ramaswamy Nagarajan, Margaret Sobkowicz‐Kline, Thao D. Nguyen","doi":"10.1002/pen.26882","DOIUrl":null,"url":null,"abstract":"<jats:label/>This study aims to establish a systematic approach for characterizing recycled polyolefins of unknown composition, with a specific focus on predicting their performance in film extrusion. We explore various characterization techniques, including differential scanning calorimetry (DSC), Fourier‐transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), and rheometry to assess their effectiveness in identifying the polyethylene (PE) fractions within polypropylene (PP) recyclates. By integrating experimental data with modeling techniques, we aim to provide insights into the predictive capabilities of these techniques in determining processing behaviors. The research highlights the superior fidelity of DSC in predicting the relative fraction and type of PE in a PP recyclate. FTIR is also identified as a high‐fidelity approach, albeit requiring application‐specific calibration. TGA, capillary, and oscillatory rheometry are recognized for their ability to distinguish between grades of recycled polyolefins but provide aggregate behaviors rather than detailed constituent information. 3D flow simulation of the cast film extrusion investigated the effect of the viscosity characterization method, non‐isothermal assumption, and process settings but could not fully replicate the observed variations in the cast film processing of two industrial polyolefins with similar melt flow rates and viscosity behaviors. This underscores the practical challenge of predicting processing issues prior to actual processing, necessitating reliance on reliable instrumentation suites and human expertise for diagnosing and remedying variations.Highlights<jats:list list-type=\"bullet\"> <jats:list-item>Two industrial recycled polypropylene materials having similar melt flow rates exhibit drastically different cast film processing behaviors.</jats:list-item> <jats:list-item>DSC and FTIR provide reasonable approaches for identifying constituent materials.</jats:list-item> <jats:list-item>Modeling of the melt viscosities characterized by capillary and parallel plate rheology suggests that viscosity variations relative to the power‐law behavior assumed in the coat hanger die design is a predominant driver of cast film instabilities.</jats:list-item> </jats:list>","PeriodicalId":20281,"journal":{"name":"Polymer Engineering and Science","volume":"373 1","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Characterization, processing, and modeling of industrial recycled polyolefins\",\"authors\":\"David O. Kazmer, Sixtus O. Nzeh, Beijun Shen, David C. Elbert, Ramaswamy Nagarajan, Margaret Sobkowicz‐Kline, Thao D. Nguyen\",\"doi\":\"10.1002/pen.26882\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<jats:label/>This study aims to establish a systematic approach for characterizing recycled polyolefins of unknown composition, with a specific focus on predicting their performance in film extrusion. We explore various characterization techniques, including differential scanning calorimetry (DSC), Fourier‐transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), and rheometry to assess their effectiveness in identifying the polyethylene (PE) fractions within polypropylene (PP) recyclates. By integrating experimental data with modeling techniques, we aim to provide insights into the predictive capabilities of these techniques in determining processing behaviors. The research highlights the superior fidelity of DSC in predicting the relative fraction and type of PE in a PP recyclate. FTIR is also identified as a high‐fidelity approach, albeit requiring application‐specific calibration. TGA, capillary, and oscillatory rheometry are recognized for their ability to distinguish between grades of recycled polyolefins but provide aggregate behaviors rather than detailed constituent information. 3D flow simulation of the cast film extrusion investigated the effect of the viscosity characterization method, non‐isothermal assumption, and process settings but could not fully replicate the observed variations in the cast film processing of two industrial polyolefins with similar melt flow rates and viscosity behaviors. This underscores the practical challenge of predicting processing issues prior to actual processing, necessitating reliance on reliable instrumentation suites and human expertise for diagnosing and remedying variations.Highlights<jats:list list-type=\\\"bullet\\\"> <jats:list-item>Two industrial recycled polypropylene materials having similar melt flow rates exhibit drastically different cast film processing behaviors.</jats:list-item> <jats:list-item>DSC and FTIR provide reasonable approaches for identifying constituent materials.</jats:list-item> <jats:list-item>Modeling of the melt viscosities characterized by capillary and parallel plate rheology suggests that viscosity variations relative to the power‐law behavior assumed in the coat hanger die design is a predominant driver of cast film instabilities.</jats:list-item> </jats:list>\",\"PeriodicalId\":20281,\"journal\":{\"name\":\"Polymer Engineering and Science\",\"volume\":\"373 1\",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polymer Engineering and Science\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/pen.26882\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer Engineering and Science","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/pen.26882","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Characterization, processing, and modeling of industrial recycled polyolefins
This study aims to establish a systematic approach for characterizing recycled polyolefins of unknown composition, with a specific focus on predicting their performance in film extrusion. We explore various characterization techniques, including differential scanning calorimetry (DSC), Fourier‐transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), and rheometry to assess their effectiveness in identifying the polyethylene (PE) fractions within polypropylene (PP) recyclates. By integrating experimental data with modeling techniques, we aim to provide insights into the predictive capabilities of these techniques in determining processing behaviors. The research highlights the superior fidelity of DSC in predicting the relative fraction and type of PE in a PP recyclate. FTIR is also identified as a high‐fidelity approach, albeit requiring application‐specific calibration. TGA, capillary, and oscillatory rheometry are recognized for their ability to distinguish between grades of recycled polyolefins but provide aggregate behaviors rather than detailed constituent information. 3D flow simulation of the cast film extrusion investigated the effect of the viscosity characterization method, non‐isothermal assumption, and process settings but could not fully replicate the observed variations in the cast film processing of two industrial polyolefins with similar melt flow rates and viscosity behaviors. This underscores the practical challenge of predicting processing issues prior to actual processing, necessitating reliance on reliable instrumentation suites and human expertise for diagnosing and remedying variations.HighlightsTwo industrial recycled polypropylene materials having similar melt flow rates exhibit drastically different cast film processing behaviors.DSC and FTIR provide reasonable approaches for identifying constituent materials.Modeling of the melt viscosities characterized by capillary and parallel plate rheology suggests that viscosity variations relative to the power‐law behavior assumed in the coat hanger die design is a predominant driver of cast film instabilities.
期刊介绍:
For more than 30 years, Polymer Engineering & Science has been one of the most highly regarded journals in the field, serving as a forum for authors of treatises on the cutting edge of polymer science and technology. The importance of PE&S is underscored by the frequent rate at which its articles are cited, especially by other publications - literally thousand of times a year. Engineers, researchers, technicians, and academicians worldwide are looking to PE&S for the valuable information they need. There are special issues compiled by distinguished guest editors. These contain proceedings of symposia on such diverse topics as polyblends, mechanics of plastics and polymer welding.