蜿蜒曲折、超椭圆枕套和约翰逊滤波器

Pub Date : 2024-08-08 DOI:10.1007/s10711-024-00936-w
Luke Jeffreys
{"title":"蜿蜒曲折、超椭圆枕套和约翰逊滤波器","authors":"Luke Jeffreys","doi":"10.1007/s10711-024-00936-w","DOIUrl":null,"url":null,"abstract":"<p>We provide minimal constructions of meanders with particular combinatorics. Using these meanders, we give minimal constructions of hyperelliptic pillowcase covers with a single horizontal cylinder and simultaneously a single vertical cylinder so that one or both of the core curves are separating curves on the underlying surface. In the case where both of the core curves are separating, we use these surfaces in a construction of Aougab–Taylor in order to prove that for any hyperelliptic connected component of the moduli space of quadratic differentials with no poles there exist ratio-optimising pseudo-Anosovs lying arbitrarily deep in the Johnson filtration and stabilising the Teichmüller disk of a quadratic differential lying in this connected component.\n</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Meanders, hyperelliptic pillowcase covers, and the Johnson filtration\",\"authors\":\"Luke Jeffreys\",\"doi\":\"10.1007/s10711-024-00936-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We provide minimal constructions of meanders with particular combinatorics. Using these meanders, we give minimal constructions of hyperelliptic pillowcase covers with a single horizontal cylinder and simultaneously a single vertical cylinder so that one or both of the core curves are separating curves on the underlying surface. In the case where both of the core curves are separating, we use these surfaces in a construction of Aougab–Taylor in order to prove that for any hyperelliptic connected component of the moduli space of quadratic differentials with no poles there exist ratio-optimising pseudo-Anosovs lying arbitrarily deep in the Johnson filtration and stabilising the Teichmüller disk of a quadratic differential lying in this connected component.\\n</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10711-024-00936-w\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10711-024-00936-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们提供了具有特殊组合学的蜿蜒曲线的最小构造。利用这些蜿蜒曲,我们给出了具有单个水平圆柱和同时具有单个垂直圆柱的超椭圆枕套盖的最小构造,这样,核心曲线中的一条或两条都是底面上的分离曲线。在两条核心曲线都是分离曲线的情况下,我们在奥格布-泰勒的构造中使用这些曲面,以证明对于无极点二次微分模空间的任何超椭圆连通分量,都存在比率优化的伪阿诺索夫,这些伪阿诺索夫任意深地位于约翰逊滤波中,并稳定位于该连通分量中的二次微分的泰希米勒盘。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Meanders, hyperelliptic pillowcase covers, and the Johnson filtration

分享
查看原文
Meanders, hyperelliptic pillowcase covers, and the Johnson filtration

We provide minimal constructions of meanders with particular combinatorics. Using these meanders, we give minimal constructions of hyperelliptic pillowcase covers with a single horizontal cylinder and simultaneously a single vertical cylinder so that one or both of the core curves are separating curves on the underlying surface. In the case where both of the core curves are separating, we use these surfaces in a construction of Aougab–Taylor in order to prove that for any hyperelliptic connected component of the moduli space of quadratic differentials with no poles there exist ratio-optimising pseudo-Anosovs lying arbitrarily deep in the Johnson filtration and stabilising the Teichmüller disk of a quadratic differential lying in this connected component.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信