{"title":"超滤器的一些特性和连接系统上的图形参数","authors":"Takaaki Fujita","doi":"arxiv-2408.02299","DOIUrl":null,"url":null,"abstract":"An ultrafilter is a maximal filter on a set, playing a crucial role in set\ntheory and topology for rigorously handling limits, convergence, and\ncompactness. A connectivity system is defined as a pair (X, f), where X is a\nfinite set and f is a symmetric submodular function. Understanding the duality\nin these parameters helps to elucidate the relationship between different\ndecompositions and measures of a graph's complexity. In this paper, we delve\ninto ultrafilters on connectivity systems, applying Tukey's Lemma to these\nsystems. Additionally, we explore prefilters, ultra-prefilters, and subbases\nwithin the context of connectivity systems. Furthermore, we introduce and\ninvestigate new parameters related to width, length, and depth.","PeriodicalId":501306,"journal":{"name":"arXiv - MATH - Logic","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Some Property of an Ultrafilter and Graph parameters on Connectivity System\",\"authors\":\"Takaaki Fujita\",\"doi\":\"arxiv-2408.02299\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An ultrafilter is a maximal filter on a set, playing a crucial role in set\\ntheory and topology for rigorously handling limits, convergence, and\\ncompactness. A connectivity system is defined as a pair (X, f), where X is a\\nfinite set and f is a symmetric submodular function. Understanding the duality\\nin these parameters helps to elucidate the relationship between different\\ndecompositions and measures of a graph's complexity. In this paper, we delve\\ninto ultrafilters on connectivity systems, applying Tukey's Lemma to these\\nsystems. Additionally, we explore prefilters, ultra-prefilters, and subbases\\nwithin the context of connectivity systems. Furthermore, we introduce and\\ninvestigate new parameters related to width, length, and depth.\",\"PeriodicalId\":501306,\"journal\":{\"name\":\"arXiv - MATH - Logic\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Logic\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.02299\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Logic","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.02299","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
超滤波器是集合上的最大滤波器,在集合论和拓扑学中对严格处理极限、收敛和紧凑性起着至关重要的作用。连通性系统被定义为一对(X, f),其中 X 是一个无穷集,f 是一个对称子模函数。理解这些参数的对偶性有助于阐明不同分解与图的复杂性度量之间的关系。在本文中,我们深入探讨了连通性系统上的超滤波器,并将 Tukey's Lemma 应用于这些系统。此外,我们还探讨了连通性系统中的前置过滤器、超前置过滤器和子基础。此外,我们还引入并研究了与宽度、长度和深度相关的新参数。
Some Property of an Ultrafilter and Graph parameters on Connectivity System
An ultrafilter is a maximal filter on a set, playing a crucial role in set
theory and topology for rigorously handling limits, convergence, and
compactness. A connectivity system is defined as a pair (X, f), where X is a
finite set and f is a symmetric submodular function. Understanding the duality
in these parameters helps to elucidate the relationship between different
decompositions and measures of a graph's complexity. In this paper, we delve
into ultrafilters on connectivity systems, applying Tukey's Lemma to these
systems. Additionally, we explore prefilters, ultra-prefilters, and subbases
within the context of connectivity systems. Furthermore, we introduce and
investigate new parameters related to width, length, and depth.