超滤器的一些特性和连接系统上的图形参数

Takaaki Fujita
{"title":"超滤器的一些特性和连接系统上的图形参数","authors":"Takaaki Fujita","doi":"arxiv-2408.02299","DOIUrl":null,"url":null,"abstract":"An ultrafilter is a maximal filter on a set, playing a crucial role in set\ntheory and topology for rigorously handling limits, convergence, and\ncompactness. A connectivity system is defined as a pair (X, f), where X is a\nfinite set and f is a symmetric submodular function. Understanding the duality\nin these parameters helps to elucidate the relationship between different\ndecompositions and measures of a graph's complexity. In this paper, we delve\ninto ultrafilters on connectivity systems, applying Tukey's Lemma to these\nsystems. Additionally, we explore prefilters, ultra-prefilters, and subbases\nwithin the context of connectivity systems. Furthermore, we introduce and\ninvestigate new parameters related to width, length, and depth.","PeriodicalId":501306,"journal":{"name":"arXiv - MATH - Logic","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Some Property of an Ultrafilter and Graph parameters on Connectivity System\",\"authors\":\"Takaaki Fujita\",\"doi\":\"arxiv-2408.02299\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An ultrafilter is a maximal filter on a set, playing a crucial role in set\\ntheory and topology for rigorously handling limits, convergence, and\\ncompactness. A connectivity system is defined as a pair (X, f), where X is a\\nfinite set and f is a symmetric submodular function. Understanding the duality\\nin these parameters helps to elucidate the relationship between different\\ndecompositions and measures of a graph's complexity. In this paper, we delve\\ninto ultrafilters on connectivity systems, applying Tukey's Lemma to these\\nsystems. Additionally, we explore prefilters, ultra-prefilters, and subbases\\nwithin the context of connectivity systems. Furthermore, we introduce and\\ninvestigate new parameters related to width, length, and depth.\",\"PeriodicalId\":501306,\"journal\":{\"name\":\"arXiv - MATH - Logic\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Logic\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.02299\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Logic","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.02299","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

超滤波器是集合上的最大滤波器,在集合论和拓扑学中对严格处理极限、收敛和紧凑性起着至关重要的作用。连通性系统被定义为一对(X, f),其中 X 是一个无穷集,f 是一个对称子模函数。理解这些参数的对偶性有助于阐明不同分解与图的复杂性度量之间的关系。在本文中,我们深入探讨了连通性系统上的超滤波器,并将 Tukey's Lemma 应用于这些系统。此外,我们还探讨了连通性系统中的前置过滤器、超前置过滤器和子基础。此外,我们还引入并研究了与宽度、长度和深度相关的新参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Some Property of an Ultrafilter and Graph parameters on Connectivity System
An ultrafilter is a maximal filter on a set, playing a crucial role in set theory and topology for rigorously handling limits, convergence, and compactness. A connectivity system is defined as a pair (X, f), where X is a finite set and f is a symmetric submodular function. Understanding the duality in these parameters helps to elucidate the relationship between different decompositions and measures of a graph's complexity. In this paper, we delve into ultrafilters on connectivity systems, applying Tukey's Lemma to these systems. Additionally, we explore prefilters, ultra-prefilters, and subbases within the context of connectivity systems. Furthermore, we introduce and investigate new parameters related to width, length, and depth.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信