同态$E_0^\mathbb{N}$的通用二分法

Assaf Shani
{"title":"同态$E_0^\\mathbb{N}$的通用二分法","authors":"Assaf Shani","doi":"arxiv-2408.01261","DOIUrl":null,"url":null,"abstract":"We prove the following dichotomy. Given an analytic equivalence relation $E$,\neither ${E_0^{\\mathbb{N}}}\\leq_B{E}$ or else any Borel homomorphism from\n$E_0^{\\mathbb{N}}$ to $E$ is \"very far from a reduction\", specifically, it\nfactors, on a comeager set, through the projection map\n$(2^{\\mathbb{N}})^{\\mathbb{N}}\\to (2^{\\mathbb{N}})^k$ for some\n$k\\in\\mathbb{N}$. As a corollary, we prove that $E_0^{\\mathbb{N}}$ is a prime\nequivalence relation, answering a question on Clemens.","PeriodicalId":501306,"journal":{"name":"arXiv - MATH - Logic","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generic dichotomy for homomorphisms for $E_0^\\\\mathbb{N}$\",\"authors\":\"Assaf Shani\",\"doi\":\"arxiv-2408.01261\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove the following dichotomy. Given an analytic equivalence relation $E$,\\neither ${E_0^{\\\\mathbb{N}}}\\\\leq_B{E}$ or else any Borel homomorphism from\\n$E_0^{\\\\mathbb{N}}$ to $E$ is \\\"very far from a reduction\\\", specifically, it\\nfactors, on a comeager set, through the projection map\\n$(2^{\\\\mathbb{N}})^{\\\\mathbb{N}}\\\\to (2^{\\\\mathbb{N}})^k$ for some\\n$k\\\\in\\\\mathbb{N}$. As a corollary, we prove that $E_0^{\\\\mathbb{N}}$ is a prime\\nequivalence relation, answering a question on Clemens.\",\"PeriodicalId\":501306,\"journal\":{\"name\":\"arXiv - MATH - Logic\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Logic\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.01261\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Logic","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.01261","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们将证明以下二分法。给定一个解析等价关系 $E$,要么 ${E_0^{\mathbb{N}}}\leq_B{E}$ 要么任何从$E_0^{mathbb{N}}$ 到 $E$ 的伯尔同构都 "离还原很远"、具体地说,它是通过投影图$(2^{\mathbb{N}})^{mathbb{N}}\to (2^{mathbb{N}})^k$ 对某个$kin\mathbb{N}$的投影图,在一个comeager集合上形成的。作为一个推论,我们证明 $E_0^{mathbb{N}}$ 是一个首要等价关系,从而回答了一个关于克莱门斯的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Generic dichotomy for homomorphisms for $E_0^\mathbb{N}$
We prove the following dichotomy. Given an analytic equivalence relation $E$, either ${E_0^{\mathbb{N}}}\leq_B{E}$ or else any Borel homomorphism from $E_0^{\mathbb{N}}$ to $E$ is "very far from a reduction", specifically, it factors, on a comeager set, through the projection map $(2^{\mathbb{N}})^{\mathbb{N}}\to (2^{\mathbb{N}})^k$ for some $k\in\mathbb{N}$. As a corollary, we prove that $E_0^{\mathbb{N}}$ is a prime equivalence relation, answering a question on Clemens.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信