规范空间的离散子群是自由的

Tomasz Kania, Ziemowit Kostana
{"title":"规范空间的离散子群是自由的","authors":"Tomasz Kania, Ziemowit Kostana","doi":"arxiv-2408.03226","DOIUrl":null,"url":null,"abstract":"Ancel, Dobrowolski, and Grabowski (Studia Math., 1994) proved that every\ncountable discrete subgroup of the additive group of a normed space is free\nAbelian, hence isomorphic to the direct sum of a certain number of copies of\nthe additive group of the integers. In the present paper, we take a\nset-theoretic approach based on the theory of elementary submodels and the\nSingular Compactness Theorem to remove the cardinality constraint from their\nresult and prove that indeed every discrete subgroup of the additive group of a\nnormed space is free Abelian.","PeriodicalId":501306,"journal":{"name":"arXiv - MATH - Logic","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Discrete subgroups of normed spaces are free\",\"authors\":\"Tomasz Kania, Ziemowit Kostana\",\"doi\":\"arxiv-2408.03226\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ancel, Dobrowolski, and Grabowski (Studia Math., 1994) proved that every\\ncountable discrete subgroup of the additive group of a normed space is free\\nAbelian, hence isomorphic to the direct sum of a certain number of copies of\\nthe additive group of the integers. In the present paper, we take a\\nset-theoretic approach based on the theory of elementary submodels and the\\nSingular Compactness Theorem to remove the cardinality constraint from their\\nresult and prove that indeed every discrete subgroup of the additive group of a\\nnormed space is free Abelian.\",\"PeriodicalId\":501306,\"journal\":{\"name\":\"arXiv - MATH - Logic\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Logic\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.03226\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Logic","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.03226","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

Ancel、Dobrowolski 和 Grabowski(Studia Math.,1994)证明了规范空间的加法群的每一个可数离散子群都是自由阿贝尔群,因此与整数加法群的一定数量副本的直和同构。在本文中,我们采用基于基本子模型理论和星形紧凑性定理的集合论方法,消除了他们的结果中的万有引力约束,并证明了规范空间的加法群的每个离散子群确实都是自由阿贝尔群。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Discrete subgroups of normed spaces are free
Ancel, Dobrowolski, and Grabowski (Studia Math., 1994) proved that every countable discrete subgroup of the additive group of a normed space is free Abelian, hence isomorphic to the direct sum of a certain number of copies of the additive group of the integers. In the present paper, we take a set-theoretic approach based on the theory of elementary submodels and the Singular Compactness Theorem to remove the cardinality constraint from their result and prove that indeed every discrete subgroup of the additive group of a normed space is free Abelian.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信