大卡数阿蒂尼群

Samuel M. Corson, Saharon Shelah
{"title":"大卡数阿蒂尼群","authors":"Samuel M. Corson, Saharon Shelah","doi":"arxiv-2408.03201","DOIUrl":null,"url":null,"abstract":"A group is Artinian if there is no infinite strictly descending chain of\nsubgroups. Ol'shanskii has asked whether there are Artinian groups of\narbitrarily large cardinality. We reduce this problem to an analogous question,\nregarding universal algebras, asked by J\\'onsson in the 1960s. We provide\nArtinian groups of cardinality $\\aleph_n$ for each natural number $n$. We also\ngive a consistent strong negative answer to the question of Ol'shanskii (from a\nlarge cardinal assumption) as well as a consistent positive answer. Thus,\nanswers to the questions of Ol'shanskii and J\\'onsson are independent of set\ntheory.","PeriodicalId":501306,"journal":{"name":"arXiv - MATH - Logic","volume":"27 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Artinian groups of large cardinality\",\"authors\":\"Samuel M. Corson, Saharon Shelah\",\"doi\":\"arxiv-2408.03201\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A group is Artinian if there is no infinite strictly descending chain of\\nsubgroups. Ol'shanskii has asked whether there are Artinian groups of\\narbitrarily large cardinality. We reduce this problem to an analogous question,\\nregarding universal algebras, asked by J\\\\'onsson in the 1960s. We provide\\nArtinian groups of cardinality $\\\\aleph_n$ for each natural number $n$. We also\\ngive a consistent strong negative answer to the question of Ol'shanskii (from a\\nlarge cardinal assumption) as well as a consistent positive answer. Thus,\\nanswers to the questions of Ol'shanskii and J\\\\'onsson are independent of set\\ntheory.\",\"PeriodicalId\":501306,\"journal\":{\"name\":\"arXiv - MATH - Logic\",\"volume\":\"27 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Logic\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.03201\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Logic","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.03201","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

如果不存在无限严格降序的子群链,那么这个群就是阿蒂尼亚群。奥尔尚斯基曾提出是否存在任意大心数的阿蒂尼亚群。我们把这个问题还原为一个类似的问题,即 J\'onsson 在 20 世纪 60 年代提出的关于普遍代数的问题。我们为每个自然数 $n$ 提供了心数为 $\aleph_n$ 的阿蒂尼亚群。我们还对奥尔尚斯基的问题给出了一致的强否定答案(来自大心性假设)和一致的肯定答案。因此,对奥尔尚斯基和约翰逊问题的回答是独立于设定理论的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Artinian groups of large cardinality
A group is Artinian if there is no infinite strictly descending chain of subgroups. Ol'shanskii has asked whether there are Artinian groups of arbitrarily large cardinality. We reduce this problem to an analogous question, regarding universal algebras, asked by J\'onsson in the 1960s. We provide Artinian groups of cardinality $\aleph_n$ for each natural number $n$. We also give a consistent strong negative answer to the question of Ol'shanskii (from a large cardinal assumption) as well as a consistent positive answer. Thus, answers to the questions of Ol'shanskii and J\'onsson are independent of set theory.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信