可定义伽罗瓦同调中的短精确序列

David Meretzky
{"title":"可定义伽罗瓦同调中的短精确序列","authors":"David Meretzky","doi":"arxiv-2408.04147","DOIUrl":null,"url":null,"abstract":"In Remarks on Galois Cohomology and Definability [2], Pillay introduced\ndefinable Galois cohomology, a model-theoretic generalization of Galois\ncohomology. Let $M$ be an atomic and strongly $\\omega$-homogeneous structure\nover a set of parameters $A$. Let $B$ be a normal extension of $A$ in $M$. We\nshow that a short exact sequence of automorphism groups $1 \\to \\text{Aut}(M/B)\n\\to \\text{Aut}(M/A) \\to \\text{Aut}(B/A) \\to 1$ induces a short exact sequence\nin definable Galois cohomology. Our result complements the long exact sequence\nin definable Galois cohomology developed in More on Galois cohomology,\ndefinability and differential algebraic groups [3].","PeriodicalId":501306,"journal":{"name":"arXiv - MATH - Logic","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The short exact sequence in definable Galois cohomology\",\"authors\":\"David Meretzky\",\"doi\":\"arxiv-2408.04147\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In Remarks on Galois Cohomology and Definability [2], Pillay introduced\\ndefinable Galois cohomology, a model-theoretic generalization of Galois\\ncohomology. Let $M$ be an atomic and strongly $\\\\omega$-homogeneous structure\\nover a set of parameters $A$. Let $B$ be a normal extension of $A$ in $M$. We\\nshow that a short exact sequence of automorphism groups $1 \\\\to \\\\text{Aut}(M/B)\\n\\\\to \\\\text{Aut}(M/A) \\\\to \\\\text{Aut}(B/A) \\\\to 1$ induces a short exact sequence\\nin definable Galois cohomology. Our result complements the long exact sequence\\nin definable Galois cohomology developed in More on Galois cohomology,\\ndefinability and differential algebraic groups [3].\",\"PeriodicalId\":501306,\"journal\":{\"name\":\"arXiv - MATH - Logic\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Logic\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.04147\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Logic","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.04147","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在《关于伽罗瓦同调与可定义性的评论》[2]中,皮莱介绍了可定义伽罗瓦同调,它是伽罗瓦同调的一种模型理论概括。让 $M$ 是在一组参数 $A$ 上的原子和强 $\omega$ 同调结构。让 $B$ 是 $A$ 在 $M$ 中的正常扩展。我们可以看到,自变群的短精确序列 $1 (到)\text{Aut}(M/B)(到)\text{Aut}(M/A)(到)\text{Aut}(B/A)(到)1$ 在可定义的伽罗瓦同调中诱导了一个短精确序列。我们的结果是对《更多关于伽罗瓦同调、可定义性和微分代数群》[3] 中提出的可定义伽罗瓦同调中的长精确序列的补充。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The short exact sequence in definable Galois cohomology
In Remarks on Galois Cohomology and Definability [2], Pillay introduced definable Galois cohomology, a model-theoretic generalization of Galois cohomology. Let $M$ be an atomic and strongly $\omega$-homogeneous structure over a set of parameters $A$. Let $B$ be a normal extension of $A$ in $M$. We show that a short exact sequence of automorphism groups $1 \to \text{Aut}(M/B) \to \text{Aut}(M/A) \to \text{Aut}(B/A) \to 1$ induces a short exact sequence in definable Galois cohomology. Our result complements the long exact sequence in definable Galois cohomology developed in More on Galois cohomology, definability and differential algebraic groups [3].
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信