S5 模态卢卡西维茨逻辑的强标准完备性定理

Diego Castaño, José Patricio Díaz Varela, Gabriel Savoy
{"title":"S5 模态卢卡西维茨逻辑的强标准完备性定理","authors":"Diego Castaño, José Patricio Díaz Varela, Gabriel Savoy","doi":"arxiv-2408.04757","DOIUrl":null,"url":null,"abstract":"We study the S5-modal expansion of the logic based on the Lukasiewicz t-norm.\nWe exhibit a finitary propositional calculus and show that it is finitely\nstrongly complete with respect to this logic. This propositional calculus is\nthen expanded with an infinitary rule to achieve strong completeness. These\nresults are derived from properties of monadic MValgebras: functional\nrepresentations of simple and finitely subdirectly irreducible algebras, as\nwell as the finite embeddability property. We also show similar completeness\ntheorems for the extension of the logic based on models with bounded universe.","PeriodicalId":501306,"journal":{"name":"arXiv - MATH - Logic","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Strong standard completeness theorems for S5-modal Lukasiewicz logics\",\"authors\":\"Diego Castaño, José Patricio Díaz Varela, Gabriel Savoy\",\"doi\":\"arxiv-2408.04757\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the S5-modal expansion of the logic based on the Lukasiewicz t-norm.\\nWe exhibit a finitary propositional calculus and show that it is finitely\\nstrongly complete with respect to this logic. This propositional calculus is\\nthen expanded with an infinitary rule to achieve strong completeness. These\\nresults are derived from properties of monadic MValgebras: functional\\nrepresentations of simple and finitely subdirectly irreducible algebras, as\\nwell as the finite embeddability property. We also show similar completeness\\ntheorems for the extension of the logic based on models with bounded universe.\",\"PeriodicalId\":501306,\"journal\":{\"name\":\"arXiv - MATH - Logic\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Logic\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.04757\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Logic","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.04757","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了基于卢卡西维茨 t 规范的逻辑的 S5 模扩展。我们展示了一个有限命题微积分,并证明它相对于该逻辑是有限强完备的。我们展示了一个有限命题微积分,并证明它相对于这个逻辑是有限强完备的。然后用一个无穷规则对这个命题微积分进行扩展,以实现强完备性。这些结果源自单元 MV 对象的性质:简单和有限次直接不可还原对象的函数表示,以及有限可嵌入性性质。我们还展示了基于有界宇宙模型的逻辑扩展的类似完备性定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Strong standard completeness theorems for S5-modal Lukasiewicz logics
We study the S5-modal expansion of the logic based on the Lukasiewicz t-norm. We exhibit a finitary propositional calculus and show that it is finitely strongly complete with respect to this logic. This propositional calculus is then expanded with an infinitary rule to achieve strong completeness. These results are derived from properties of monadic MValgebras: functional representations of simple and finitely subdirectly irreducible algebras, as well as the finite embeddability property. We also show similar completeness theorems for the extension of the logic based on models with bounded universe.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信