利用脉冲密度调制 MEMS 麦克风进行神经形态关键词搜索

Sidi Yaya Arnaud Yarga, Sean U. N. Wood
{"title":"利用脉冲密度调制 MEMS 麦克风进行神经形态关键词搜索","authors":"Sidi Yaya Arnaud Yarga, Sean U. N. Wood","doi":"arxiv-2408.05156","DOIUrl":null,"url":null,"abstract":"The Keyword Spotting (KWS) task involves continuous audio stream monitoring\nto detect predefined words, requiring low energy devices for continuous\nprocessing. Neuromorphic devices effectively address this energy challenge.\nHowever, the general neuromorphic KWS pipeline, from microphone to Spiking\nNeural Network (SNN), entails multiple processing stages. Leveraging the\npopularity of Pulse Density Modulation (PDM) microphones in modern devices and\ntheir similarity to spiking neurons, we propose a direct microphone-to-SNN\nconnection. This approach eliminates intermediate stages, notably reducing\ncomputational costs. The system achieved an accuracy of 91.54\\% on the Google\nSpeech Command (GSC) dataset, surpassing the state-of-the-art for the Spiking\nSpeech Command (SSC) dataset which is a bio-inspired encoded GSC. Furthermore,\nthe observed sparsity in network activity and connectivity indicates potential\nfor remarkably low energy consumption in a neuromorphic device implementation.","PeriodicalId":501347,"journal":{"name":"arXiv - CS - Neural and Evolutionary Computing","volume":"26 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Neuromorphic Keyword Spotting with Pulse Density Modulation MEMS Microphones\",\"authors\":\"Sidi Yaya Arnaud Yarga, Sean U. N. Wood\",\"doi\":\"arxiv-2408.05156\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Keyword Spotting (KWS) task involves continuous audio stream monitoring\\nto detect predefined words, requiring low energy devices for continuous\\nprocessing. Neuromorphic devices effectively address this energy challenge.\\nHowever, the general neuromorphic KWS pipeline, from microphone to Spiking\\nNeural Network (SNN), entails multiple processing stages. Leveraging the\\npopularity of Pulse Density Modulation (PDM) microphones in modern devices and\\ntheir similarity to spiking neurons, we propose a direct microphone-to-SNN\\nconnection. This approach eliminates intermediate stages, notably reducing\\ncomputational costs. The system achieved an accuracy of 91.54\\\\% on the Google\\nSpeech Command (GSC) dataset, surpassing the state-of-the-art for the Spiking\\nSpeech Command (SSC) dataset which is a bio-inspired encoded GSC. Furthermore,\\nthe observed sparsity in network activity and connectivity indicates potential\\nfor remarkably low energy consumption in a neuromorphic device implementation.\",\"PeriodicalId\":501347,\"journal\":{\"name\":\"arXiv - CS - Neural and Evolutionary Computing\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Neural and Evolutionary Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.05156\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Neural and Evolutionary Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.05156","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

关键词定位(KWS)任务涉及持续监测音频流以检测预定义词,需要低能耗设备进行持续处理。然而,从麦克风到尖峰神经网络(SNN)的一般神经形态 KWS 管道需要多个处理阶段。利用脉冲密度调制(PDM)麦克风在现代设备中的普及及其与尖峰神经元的相似性,我们提出了麦克风到尖峰神经网络的直接连接。这种方法省去了中间环节,显著降低了计算成本。该系统在谷歌语音命令(GSC)数据集上的准确率达到了 91.54%,超过了生物启发编码 GSC 数据集 SpikingSpeech Command(SSC)的最先进水平。此外,观察到的网络活动和连通性的稀疏性表明,在神经形态设备的实现中,具有显著降低能耗的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Neuromorphic Keyword Spotting with Pulse Density Modulation MEMS Microphones
The Keyword Spotting (KWS) task involves continuous audio stream monitoring to detect predefined words, requiring low energy devices for continuous processing. Neuromorphic devices effectively address this energy challenge. However, the general neuromorphic KWS pipeline, from microphone to Spiking Neural Network (SNN), entails multiple processing stages. Leveraging the popularity of Pulse Density Modulation (PDM) microphones in modern devices and their similarity to spiking neurons, we propose a direct microphone-to-SNN connection. This approach eliminates intermediate stages, notably reducing computational costs. The system achieved an accuracy of 91.54\% on the Google Speech Command (GSC) dataset, surpassing the state-of-the-art for the Spiking Speech Command (SSC) dataset which is a bio-inspired encoded GSC. Furthermore, the observed sparsity in network activity and connectivity indicates potential for remarkably low energy consumption in a neuromorphic device implementation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信