Diego Castaño, José Patricio Díaz Varela, Gabriel Savoy
{"title":"连续 t 规范谓词逻辑的强完备性","authors":"Diego Castaño, José Patricio Díaz Varela, Gabriel Savoy","doi":"arxiv-2408.04792","DOIUrl":null,"url":null,"abstract":"The axiomatic system introduced by H\\'ajek axiomatizes first-order logic\nbased on BL-chains. In this study, we extend this system with the axiom\n$(\\forall x \\phi)^2 \\leftrightarrow \\forall x \\phi^2$ and the infinitary rule\n\\[ \\frac{\\phi \\vee (\\alpha \\to \\beta^n):n \\in \\mathbb{N}}{\\phi \\vee (\\alpha \\to\n\\alpha \\& \\beta)} \\] to achieve strong completeness with respect to continuous\nt-norms.","PeriodicalId":501306,"journal":{"name":"arXiv - MATH - Logic","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Strong completeness for the predicate logic of the continuous t-norms\",\"authors\":\"Diego Castaño, José Patricio Díaz Varela, Gabriel Savoy\",\"doi\":\"arxiv-2408.04792\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The axiomatic system introduced by H\\\\'ajek axiomatizes first-order logic\\nbased on BL-chains. In this study, we extend this system with the axiom\\n$(\\\\forall x \\\\phi)^2 \\\\leftrightarrow \\\\forall x \\\\phi^2$ and the infinitary rule\\n\\\\[ \\\\frac{\\\\phi \\\\vee (\\\\alpha \\\\to \\\\beta^n):n \\\\in \\\\mathbb{N}}{\\\\phi \\\\vee (\\\\alpha \\\\to\\n\\\\alpha \\\\& \\\\beta)} \\\\] to achieve strong completeness with respect to continuous\\nt-norms.\",\"PeriodicalId\":501306,\"journal\":{\"name\":\"arXiv - MATH - Logic\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Logic\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.04792\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Logic","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.04792","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
阿杰克(H\'ajek)引入的公理系统将基于BL-链的一阶逻辑公理化。在本研究中,我们用公理$(forall x \phi)^2 \leftrightarrow \forall x \phi^2$ 和无穷规则来扩展这个系统:n \in \mathbb{N}}{phi \vee (\alpha \to\alpha \& \beta)} \]来实现关于连续规范的强完备性。
Strong completeness for the predicate logic of the continuous t-norms
The axiomatic system introduced by H\'ajek axiomatizes first-order logic
based on BL-chains. In this study, we extend this system with the axiom
$(\forall x \phi)^2 \leftrightarrow \forall x \phi^2$ and the infinitary rule
\[ \frac{\phi \vee (\alpha \to \beta^n):n \in \mathbb{N}}{\phi \vee (\alpha \to
\alpha \& \beta)} \] to achieve strong completeness with respect to continuous
t-norms.