速度依赖性斯莫卢霍夫斯基凝固方程

IF 2.2 2区 数学 Q1 MATHEMATICS, APPLIED
Franco Flandoli, Ruojun Huang, Andrea Papini
{"title":"速度依赖性斯莫卢霍夫斯基凝固方程","authors":"Franco Flandoli, Ruojun Huang, Andrea Papini","doi":"10.1137/22m1540594","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Mathematical Analysis, Volume 56, Issue 4, Page 5634-5677, August 2024. <br/> Abstract. We introduce a variant of the Smoluchowski coagulation equation as a kinetic equation with both position and velocity variables, which arises as the scaling limit of a system of second-order microscopic coagulating particles. We focus on the rigorous study of the [math] system in the spatially homogeneous case, proving existence and uniqueness under different initial conditions in suitable weighted spaces, investigating also the regularity of such solutions.","PeriodicalId":51150,"journal":{"name":"SIAM Journal on Mathematical Analysis","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Smoluchowski Coagulation Equation with Velocity Dependence\",\"authors\":\"Franco Flandoli, Ruojun Huang, Andrea Papini\",\"doi\":\"10.1137/22m1540594\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SIAM Journal on Mathematical Analysis, Volume 56, Issue 4, Page 5634-5677, August 2024. <br/> Abstract. We introduce a variant of the Smoluchowski coagulation equation as a kinetic equation with both position and velocity variables, which arises as the scaling limit of a system of second-order microscopic coagulating particles. We focus on the rigorous study of the [math] system in the spatially homogeneous case, proving existence and uniqueness under different initial conditions in suitable weighted spaces, investigating also the regularity of such solutions.\",\"PeriodicalId\":51150,\"journal\":{\"name\":\"SIAM Journal on Mathematical Analysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM Journal on Mathematical Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1137/22m1540594\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Mathematical Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/22m1540594","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

SIAM 数学分析期刊》,第 56 卷第 4 期,第 5634-5677 页,2024 年 8 月。 摘要我们介绍了斯莫卢霍夫斯基凝固方程的一个变体,它是一个既有位置变量又有速度变量的动力学方程,是二阶微观凝固粒子系统的缩放极限。我们将重点放在空间均质情况下[math]系统的严格研究上,证明了在合适的加权空间中不同初始条件下的存在性和唯一性,还研究了这种解的正则性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Smoluchowski Coagulation Equation with Velocity Dependence
SIAM Journal on Mathematical Analysis, Volume 56, Issue 4, Page 5634-5677, August 2024.
Abstract. We introduce a variant of the Smoluchowski coagulation equation as a kinetic equation with both position and velocity variables, which arises as the scaling limit of a system of second-order microscopic coagulating particles. We focus on the rigorous study of the [math] system in the spatially homogeneous case, proving existence and uniqueness under different initial conditions in suitable weighted spaces, investigating also the regularity of such solutions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.30
自引率
5.00%
发文量
175
审稿时长
12 months
期刊介绍: SIAM Journal on Mathematical Analysis (SIMA) features research articles of the highest quality employing innovative analytical techniques to treat problems in the natural sciences. Every paper has content that is primarily analytical and that employs mathematical methods in such areas as partial differential equations, the calculus of variations, functional analysis, approximation theory, harmonic or wavelet analysis, or dynamical systems. Additionally, every paper relates to a model for natural phenomena in such areas as fluid mechanics, materials science, quantum mechanics, biology, mathematical physics, or to the computational analysis of such phenomena. Submission of a manuscript to a SIAM journal is representation by the author that the manuscript has not been published or submitted simultaneously for publication elsewhere. Typical papers for SIMA do not exceed 35 journal pages. Substantial deviations from this page limit require that the referees, editor, and editor-in-chief be convinced that the increased length is both required by the subject matter and justified by the quality of the paper.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信