{"title":"非均质 ISM 中的 MHD 透镜用于定性了解超新星残余的形态","authors":"Yoshiaki Sofue","doi":"10.1007/s10509-024-04346-y","DOIUrl":null,"url":null,"abstract":"<div><p>Morphological evolution of expanding shells of fast-mode magnetohydrodynamic (MHD) waves through an inhomogeneous ISM is investigated in order to qualitatively understand the complicated morphology of shell-type supernova remnants (SNR). Interstellar clouds with high Alfvén velocity act as concave lenses to diverge the MHD waves, while those with slow Alfvén velocity act as convex lenses to converge the waves to the focal points. By combination of various types of clouds and fluctuations with different Alfvén velocities, sizes, or wavelengths, the MHD-wave shells attain various morphological structures, exhibiting filaments, arcs, loops, holes, and focal strings, mimicking old and deformed SNRs.</p></div>","PeriodicalId":8644,"journal":{"name":"Astrophysics and Space Science","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10509-024-04346-y.pdf","citationCount":"0","resultStr":"{\"title\":\"MHD lensing in inhomogeneous ISM for qualitative understanding of the morphology of supernova remnants\",\"authors\":\"Yoshiaki Sofue\",\"doi\":\"10.1007/s10509-024-04346-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Morphological evolution of expanding shells of fast-mode magnetohydrodynamic (MHD) waves through an inhomogeneous ISM is investigated in order to qualitatively understand the complicated morphology of shell-type supernova remnants (SNR). Interstellar clouds with high Alfvén velocity act as concave lenses to diverge the MHD waves, while those with slow Alfvén velocity act as convex lenses to converge the waves to the focal points. By combination of various types of clouds and fluctuations with different Alfvén velocities, sizes, or wavelengths, the MHD-wave shells attain various morphological structures, exhibiting filaments, arcs, loops, holes, and focal strings, mimicking old and deformed SNRs.</p></div>\",\"PeriodicalId\":8644,\"journal\":{\"name\":\"Astrophysics and Space Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10509-024-04346-y.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Astrophysics and Space Science\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10509-024-04346-y\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astrophysics and Space Science","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10509-024-04346-y","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
MHD lensing in inhomogeneous ISM for qualitative understanding of the morphology of supernova remnants
Morphological evolution of expanding shells of fast-mode magnetohydrodynamic (MHD) waves through an inhomogeneous ISM is investigated in order to qualitatively understand the complicated morphology of shell-type supernova remnants (SNR). Interstellar clouds with high Alfvén velocity act as concave lenses to diverge the MHD waves, while those with slow Alfvén velocity act as convex lenses to converge the waves to the focal points. By combination of various types of clouds and fluctuations with different Alfvén velocities, sizes, or wavelengths, the MHD-wave shells attain various morphological structures, exhibiting filaments, arcs, loops, holes, and focal strings, mimicking old and deformed SNRs.
期刊介绍:
Astrophysics and Space Science publishes original contributions and invited reviews covering the entire range of astronomy, astrophysics, astrophysical cosmology, planetary and space science and the astrophysical aspects of astrobiology. This includes both observational and theoretical research, the techniques of astronomical instrumentation and data analysis and astronomical space instrumentation. We particularly welcome papers in the general fields of high-energy astrophysics, astrophysical and astrochemical studies of the interstellar medium including star formation, planetary astrophysics, the formation and evolution of galaxies and the evolution of large scale structure in the Universe. Papers in mathematical physics or in general relativity which do not establish clear astrophysical applications will no longer be considered.
The journal also publishes topically selected special issues in research fields of particular scientific interest. These consist of both invited reviews and original research papers. Conference proceedings will not be considered. All papers published in the journal are subject to thorough and strict peer-reviewing.
Astrophysics and Space Science features short publication times after acceptance and colour printing free of charge.