scACCorDiON:用于可解释的患者水平细胞通讯图分析的聚类方法

James S. Nagai, Michael T. Schaub, Ivan G.Costa
{"title":"scACCorDiON:用于可解释的患者水平细胞通讯图分析的聚类方法","authors":"James S. Nagai, Michael T. Schaub, Ivan G.Costa","doi":"10.1101/2024.08.07.606989","DOIUrl":null,"url":null,"abstract":"<strong>Motivation</strong> The combination of single-cell sequencing with ligand-receptor analysis paves the way for the characterization of cell communication events in complex tissues. In particular, directed weighted graphs stand out as a natural representation of cell-cell communication events. However, current computational methods cannot analyze sample-specific cell-cell communication events, as measured in single-cell data produced in large patient cohorts. Cohort-based cell-cell communication analysis presents many challenges, such as the non-linear nature of cell-cell communication and the high variability presented by the patient-specific single-cell RNAseq datasets.","PeriodicalId":501213,"journal":{"name":"bioRxiv - Systems Biology","volume":"25 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"scACCorDiON: A clustering approach for explainable patient level cell cell communication graph analysis\",\"authors\":\"James S. Nagai, Michael T. Schaub, Ivan G.Costa\",\"doi\":\"10.1101/2024.08.07.606989\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<strong>Motivation</strong> The combination of single-cell sequencing with ligand-receptor analysis paves the way for the characterization of cell communication events in complex tissues. In particular, directed weighted graphs stand out as a natural representation of cell-cell communication events. However, current computational methods cannot analyze sample-specific cell-cell communication events, as measured in single-cell data produced in large patient cohorts. Cohort-based cell-cell communication analysis presents many challenges, such as the non-linear nature of cell-cell communication and the high variability presented by the patient-specific single-cell RNAseq datasets.\",\"PeriodicalId\":501213,\"journal\":{\"name\":\"bioRxiv - Systems Biology\",\"volume\":\"25 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"bioRxiv - Systems Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2024.08.07.606989\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv - Systems Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.08.07.606989","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

动机 单细胞测序与配体受体分析的结合为描述复杂组织中的细胞通讯事件铺平了道路。有向加权图尤其是细胞-细胞通讯事件的自然表征。然而,目前的计算方法无法分析样本特异性细胞-细胞通讯事件,正如在大型患者队列中产生的单细胞数据所测量的那样。基于队列的细胞-细胞通讯分析面临着许多挑战,例如细胞-细胞通讯的非线性性质以及患者特异性单细胞 RNAseq 数据集带来的高变异性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
scACCorDiON: A clustering approach for explainable patient level cell cell communication graph analysis
Motivation The combination of single-cell sequencing with ligand-receptor analysis paves the way for the characterization of cell communication events in complex tissues. In particular, directed weighted graphs stand out as a natural representation of cell-cell communication events. However, current computational methods cannot analyze sample-specific cell-cell communication events, as measured in single-cell data produced in large patient cohorts. Cohort-based cell-cell communication analysis presents many challenges, such as the non-linear nature of cell-cell communication and the high variability presented by the patient-specific single-cell RNAseq datasets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信