{"title":"人类活动和气象对中度和极端野火数量和规模的影响","authors":"Elizabeth S. Lawler, Benjamin A. Shaby","doi":"10.1002/env.2873","DOIUrl":null,"url":null,"abstract":"<p>The growing frequency and size of wildfires across the US necessitates accurate quantitative assessment of evolving wildfire behavior to predict risk from future extreme wildfires. We build a joint model of wildfire counts and burned areas, regressing key model parameters on climate and demographic covariates. We use extended generalized Pareto distributions to model the full distribution of burned areas, capturing both moderate and extreme sizes, while leveraging extreme value theory to focus particularly on the right tail. We model wildfire counts with a zero-inflated negative binomial model, and join the wildfire counts and burned areas sub-models using a temporally-varying shared random effect. Our model successfully captures the trends of wildfire counts and burned areas. By investigating the predictive power of different sets of covariates, we find that fire indices are better predictors of wildfire burned area behavior than individual climate covariates, whereas climate covariates are influential drivers of wildfire occurrence behavior.</p>","PeriodicalId":50512,"journal":{"name":"Environmetrics","volume":"35 7","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/env.2873","citationCount":"0","resultStr":"{\"title\":\"Anthropogenic and meteorological effects on the counts and sizes of moderate and extreme wildfires\",\"authors\":\"Elizabeth S. Lawler, Benjamin A. Shaby\",\"doi\":\"10.1002/env.2873\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The growing frequency and size of wildfires across the US necessitates accurate quantitative assessment of evolving wildfire behavior to predict risk from future extreme wildfires. We build a joint model of wildfire counts and burned areas, regressing key model parameters on climate and demographic covariates. We use extended generalized Pareto distributions to model the full distribution of burned areas, capturing both moderate and extreme sizes, while leveraging extreme value theory to focus particularly on the right tail. We model wildfire counts with a zero-inflated negative binomial model, and join the wildfire counts and burned areas sub-models using a temporally-varying shared random effect. Our model successfully captures the trends of wildfire counts and burned areas. By investigating the predictive power of different sets of covariates, we find that fire indices are better predictors of wildfire burned area behavior than individual climate covariates, whereas climate covariates are influential drivers of wildfire occurrence behavior.</p>\",\"PeriodicalId\":50512,\"journal\":{\"name\":\"Environmetrics\",\"volume\":\"35 7\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/env.2873\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmetrics\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/env.2873\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmetrics","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/env.2873","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Anthropogenic and meteorological effects on the counts and sizes of moderate and extreme wildfires
The growing frequency and size of wildfires across the US necessitates accurate quantitative assessment of evolving wildfire behavior to predict risk from future extreme wildfires. We build a joint model of wildfire counts and burned areas, regressing key model parameters on climate and demographic covariates. We use extended generalized Pareto distributions to model the full distribution of burned areas, capturing both moderate and extreme sizes, while leveraging extreme value theory to focus particularly on the right tail. We model wildfire counts with a zero-inflated negative binomial model, and join the wildfire counts and burned areas sub-models using a temporally-varying shared random effect. Our model successfully captures the trends of wildfire counts and burned areas. By investigating the predictive power of different sets of covariates, we find that fire indices are better predictors of wildfire burned area behavior than individual climate covariates, whereas climate covariates are influential drivers of wildfire occurrence behavior.
期刊介绍:
Environmetrics, the official journal of The International Environmetrics Society (TIES), an Association of the International Statistical Institute, is devoted to the dissemination of high-quality quantitative research in the environmental sciences.
The journal welcomes pertinent and innovative submissions from quantitative disciplines developing new statistical and mathematical techniques, methods, and theories that solve modern environmental problems. Articles must proffer substantive, new statistical or mathematical advances to answer important scientific questions in the environmental sciences, or must develop novel or enhanced statistical methodology with clear applications to environmental science. New methods should be illustrated with recent environmental data.