应用于物理信息神经网络的多级优化块坐标方法

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Serge Gratton, Valentin Mercier, Elisa Riccietti, Philippe L. Toint
{"title":"应用于物理信息神经网络的多级优化块坐标方法","authors":"Serge Gratton, Valentin Mercier, Elisa Riccietti, Philippe L. Toint","doi":"10.1007/s10589-024-00597-1","DOIUrl":null,"url":null,"abstract":"<p>Multi-level methods are widely used for the solution of large-scale problems, because of their computational advantages and exploitation of the complementarity between the involved sub-problems. After a re-interpretation of multi-level methods from a block-coordinate point of view, we propose a multi-level algorithm for the solution of nonlinear optimization problems and analyze its evaluation complexity. We apply it to the solution of partial differential equations using physics-informed neural networks (PINNs) and consider two different types of neural architectures, a generic feedforward network and a frequency-aware network. We show that our approach is particularly effective if coupled with these specialized architectures and that this coupling results in better solutions and significant computational savings.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A block-coordinate approach of multi-level optimization with an application to physics-informed neural networks\",\"authors\":\"Serge Gratton, Valentin Mercier, Elisa Riccietti, Philippe L. Toint\",\"doi\":\"10.1007/s10589-024-00597-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Multi-level methods are widely used for the solution of large-scale problems, because of their computational advantages and exploitation of the complementarity between the involved sub-problems. After a re-interpretation of multi-level methods from a block-coordinate point of view, we propose a multi-level algorithm for the solution of nonlinear optimization problems and analyze its evaluation complexity. We apply it to the solution of partial differential equations using physics-informed neural networks (PINNs) and consider two different types of neural architectures, a generic feedforward network and a frequency-aware network. We show that our approach is particularly effective if coupled with these specialized architectures and that this coupling results in better solutions and significant computational savings.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10589-024-00597-1\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10589-024-00597-1","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

多层次方法因其计算优势和利用相关子问题之间的互补性而被广泛用于解决大规模问题。从块坐标的角度重新解释多层次方法后,我们提出了一种解决非线性优化问题的多层次算法,并分析了其评估复杂性。我们将其应用于使用物理信息神经网络(PINNs)求解偏微分方程,并考虑了两种不同类型的神经架构:普通前馈网络和频率感知网络。我们的研究表明,如果将我们的方法与这些专门的架构结合起来,会特别有效,而且这种结合会带来更好的解决方案,并显著节省计算量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A block-coordinate approach of multi-level optimization with an application to physics-informed neural networks

A block-coordinate approach of multi-level optimization with an application to physics-informed neural networks

Multi-level methods are widely used for the solution of large-scale problems, because of their computational advantages and exploitation of the complementarity between the involved sub-problems. After a re-interpretation of multi-level methods from a block-coordinate point of view, we propose a multi-level algorithm for the solution of nonlinear optimization problems and analyze its evaluation complexity. We apply it to the solution of partial differential equations using physics-informed neural networks (PINNs) and consider two different types of neural architectures, a generic feedforward network and a frequency-aware network. We show that our approach is particularly effective if coupled with these specialized architectures and that this coupling results in better solutions and significant computational savings.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信