积分圆周图的最大直径

IF 0.8 4区 计算机科学 Q3 COMPUTER SCIENCE, THEORY & METHODS
Milan Bašić , Aleksandar Ilić , Aleksandar Stamenković
{"title":"积分圆周图的最大直径","authors":"Milan Bašić ,&nbsp;Aleksandar Ilić ,&nbsp;Aleksandar Stamenković","doi":"10.1016/j.ic.2024.105208","DOIUrl":null,"url":null,"abstract":"<div><p>Integral circulant graphs are proposed as models for quantum spin networks enabling perfect state transfer. Understanding the potential information transfer between nodes in such networks involves calculating the maximal graph diameter. The integral circulant graph <span><math><msub><mrow><mi>ICG</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>D</mi><mo>)</mo></math></span> has vertex set <span><math><msub><mrow><mi>Z</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>=</mo><mo>{</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>n</mi><mo>−</mo><mn>1</mn><mo>}</mo></math></span>, with vertices <em>a</em> and <em>b</em> adjacent if <span><math><mi>gcd</mi><mo>⁡</mo><mo>(</mo><mi>a</mi><mo>−</mo><mi>b</mi><mo>,</mo><mi>n</mi><mo>)</mo><mo>∈</mo><mi>D</mi></math></span>, where <span><math><mi>D</mi><mo>⊆</mo><mo>{</mo><mi>d</mi><mo>:</mo><mi>d</mi><mo>|</mo><mi>n</mi><mo>,</mo><mspace></mspace><mn>1</mn><mo>≤</mo><mi>d</mi><mo>&lt;</mo><mi>n</mi><mo>}</mo></math></span>. Building on the upper bound <span><math><mn>2</mn><mo>|</mo><mi>D</mi><mo>|</mo><mo>+</mo><mn>1</mn></math></span> for the diameter provided by Saxena, Severini, and Shparlinski, we prove that the maximal diameter of <span><math><msub><mrow><mi>ICG</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>D</mi><mo>)</mo></math></span> for a given order <em>n</em> with prime factorization <span><math><msubsup><mrow><mi>p</mi></mrow><mrow><mn>1</mn></mrow><mrow><msub><mrow><mi>α</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></msubsup><mo>⋯</mo><msubsup><mrow><mi>p</mi></mrow><mrow><mi>k</mi></mrow><mrow><msub><mrow><mi>α</mi></mrow><mrow><mi>k</mi></mrow></msub></mrow></msubsup></math></span> is <span><math><mi>r</mi><mo>(</mo><mi>n</mi><mo>)</mo></math></span> or <span><math><mi>r</mi><mo>(</mo><mi>n</mi><mo>)</mo><mo>+</mo><mn>1</mn></math></span>, where <span><math><mi>r</mi><mo>(</mo><mi>n</mi><mo>)</mo><mo>=</mo><mi>k</mi><mo>+</mo><mo>|</mo><mo>{</mo><mi>i</mi><mspace></mspace><mo>|</mo><msub><mrow><mi>α</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>&gt;</mo><mn>1</mn><mo>,</mo><mspace></mspace><mn>1</mn><mo>≤</mo><mi>i</mi><mo>≤</mo><mi>k</mi><mo>}</mo><mo>|</mo></math></span>. We show that a divisor set <em>D</em> with <span><math><mo>|</mo><mi>D</mi><mo>|</mo><mo>≤</mo><mi>k</mi></math></span> achieves this bound. We calculate the maximal diameter for graphs of order <em>n</em> and divisor set cardinality <span><math><mi>t</mi><mo>≤</mo><mi>k</mi></math></span>, identifying all extremal graphs and improving the previous upper bound.</p></div>","PeriodicalId":54985,"journal":{"name":"Information and Computation","volume":"301 ","pages":"Article 105208"},"PeriodicalIF":0.8000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Maximal diameter of integral circulant graphs\",\"authors\":\"Milan Bašić ,&nbsp;Aleksandar Ilić ,&nbsp;Aleksandar Stamenković\",\"doi\":\"10.1016/j.ic.2024.105208\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Integral circulant graphs are proposed as models for quantum spin networks enabling perfect state transfer. Understanding the potential information transfer between nodes in such networks involves calculating the maximal graph diameter. The integral circulant graph <span><math><msub><mrow><mi>ICG</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>D</mi><mo>)</mo></math></span> has vertex set <span><math><msub><mrow><mi>Z</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>=</mo><mo>{</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>n</mi><mo>−</mo><mn>1</mn><mo>}</mo></math></span>, with vertices <em>a</em> and <em>b</em> adjacent if <span><math><mi>gcd</mi><mo>⁡</mo><mo>(</mo><mi>a</mi><mo>−</mo><mi>b</mi><mo>,</mo><mi>n</mi><mo>)</mo><mo>∈</mo><mi>D</mi></math></span>, where <span><math><mi>D</mi><mo>⊆</mo><mo>{</mo><mi>d</mi><mo>:</mo><mi>d</mi><mo>|</mo><mi>n</mi><mo>,</mo><mspace></mspace><mn>1</mn><mo>≤</mo><mi>d</mi><mo>&lt;</mo><mi>n</mi><mo>}</mo></math></span>. Building on the upper bound <span><math><mn>2</mn><mo>|</mo><mi>D</mi><mo>|</mo><mo>+</mo><mn>1</mn></math></span> for the diameter provided by Saxena, Severini, and Shparlinski, we prove that the maximal diameter of <span><math><msub><mrow><mi>ICG</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>D</mi><mo>)</mo></math></span> for a given order <em>n</em> with prime factorization <span><math><msubsup><mrow><mi>p</mi></mrow><mrow><mn>1</mn></mrow><mrow><msub><mrow><mi>α</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></msubsup><mo>⋯</mo><msubsup><mrow><mi>p</mi></mrow><mrow><mi>k</mi></mrow><mrow><msub><mrow><mi>α</mi></mrow><mrow><mi>k</mi></mrow></msub></mrow></msubsup></math></span> is <span><math><mi>r</mi><mo>(</mo><mi>n</mi><mo>)</mo></math></span> or <span><math><mi>r</mi><mo>(</mo><mi>n</mi><mo>)</mo><mo>+</mo><mn>1</mn></math></span>, where <span><math><mi>r</mi><mo>(</mo><mi>n</mi><mo>)</mo><mo>=</mo><mi>k</mi><mo>+</mo><mo>|</mo><mo>{</mo><mi>i</mi><mspace></mspace><mo>|</mo><msub><mrow><mi>α</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>&gt;</mo><mn>1</mn><mo>,</mo><mspace></mspace><mn>1</mn><mo>≤</mo><mi>i</mi><mo>≤</mo><mi>k</mi><mo>}</mo><mo>|</mo></math></span>. We show that a divisor set <em>D</em> with <span><math><mo>|</mo><mi>D</mi><mo>|</mo><mo>≤</mo><mi>k</mi></math></span> achieves this bound. We calculate the maximal diameter for graphs of order <em>n</em> and divisor set cardinality <span><math><mi>t</mi><mo>≤</mo><mi>k</mi></math></span>, identifying all extremal graphs and improving the previous upper bound.</p></div>\",\"PeriodicalId\":54985,\"journal\":{\"name\":\"Information and Computation\",\"volume\":\"301 \",\"pages\":\"Article 105208\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Information and Computation\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0890540124000737\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information and Computation","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0890540124000737","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

积分圆周图被提出作为量子自旋网络的模型,可实现完美的状态转移。要了解此类网络中节点之间的潜在信息传递,需要计算最大图直径。积分圆周图有顶点集 ,如果 ,则顶点和相邻。基于 Saxena、Severini 和 Shparlinski 提供的直径上限,我们证明了对于一个给定阶素数因子化的最大直径为 或 ,其中 。我们证明了具有 的除数集可以达到这个界限。我们计算了阶和除数集心率为 的图的最大直径,找出了所有极值图,并改进了之前的上限。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Maximal diameter of integral circulant graphs

Integral circulant graphs are proposed as models for quantum spin networks enabling perfect state transfer. Understanding the potential information transfer between nodes in such networks involves calculating the maximal graph diameter. The integral circulant graph ICGn(D) has vertex set Zn={0,1,2,,n1}, with vertices a and b adjacent if gcd(ab,n)D, where D{d:d|n,1d<n}. Building on the upper bound 2|D|+1 for the diameter provided by Saxena, Severini, and Shparlinski, we prove that the maximal diameter of ICGn(D) for a given order n with prime factorization p1α1pkαk is r(n) or r(n)+1, where r(n)=k+|{i|αi>1,1ik}|. We show that a divisor set D with |D|k achieves this bound. We calculate the maximal diameter for graphs of order n and divisor set cardinality tk, identifying all extremal graphs and improving the previous upper bound.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Information and Computation
Information and Computation 工程技术-计算机:理论方法
CiteScore
2.30
自引率
0.00%
发文量
119
审稿时长
140 days
期刊介绍: Information and Computation welcomes original papers in all areas of theoretical computer science and computational applications of information theory. Survey articles of exceptional quality will also be considered. Particularly welcome are papers contributing new results in active theoretical areas such as -Biological computation and computational biology- Computational complexity- Computer theorem-proving- Concurrency and distributed process theory- Cryptographic theory- Data base theory- Decision problems in logic- Design and analysis of algorithms- Discrete optimization and mathematical programming- Inductive inference and learning theory- Logic & constraint programming- Program verification & model checking- Probabilistic & Quantum computation- Semantics of programming languages- Symbolic computation, lambda calculus, and rewriting systems- Types and typechecking
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信