Milan Bašić , Aleksandar Ilić , Aleksandar Stamenković
{"title":"积分圆周图的最大直径","authors":"Milan Bašić , Aleksandar Ilić , Aleksandar Stamenković","doi":"10.1016/j.ic.2024.105208","DOIUrl":null,"url":null,"abstract":"<div><p>Integral circulant graphs are proposed as models for quantum spin networks enabling perfect state transfer. Understanding the potential information transfer between nodes in such networks involves calculating the maximal graph diameter. The integral circulant graph <span><math><msub><mrow><mi>ICG</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>D</mi><mo>)</mo></math></span> has vertex set <span><math><msub><mrow><mi>Z</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>=</mo><mo>{</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>n</mi><mo>−</mo><mn>1</mn><mo>}</mo></math></span>, with vertices <em>a</em> and <em>b</em> adjacent if <span><math><mi>gcd</mi><mo></mo><mo>(</mo><mi>a</mi><mo>−</mo><mi>b</mi><mo>,</mo><mi>n</mi><mo>)</mo><mo>∈</mo><mi>D</mi></math></span>, where <span><math><mi>D</mi><mo>⊆</mo><mo>{</mo><mi>d</mi><mo>:</mo><mi>d</mi><mo>|</mo><mi>n</mi><mo>,</mo><mspace></mspace><mn>1</mn><mo>≤</mo><mi>d</mi><mo><</mo><mi>n</mi><mo>}</mo></math></span>. Building on the upper bound <span><math><mn>2</mn><mo>|</mo><mi>D</mi><mo>|</mo><mo>+</mo><mn>1</mn></math></span> for the diameter provided by Saxena, Severini, and Shparlinski, we prove that the maximal diameter of <span><math><msub><mrow><mi>ICG</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>D</mi><mo>)</mo></math></span> for a given order <em>n</em> with prime factorization <span><math><msubsup><mrow><mi>p</mi></mrow><mrow><mn>1</mn></mrow><mrow><msub><mrow><mi>α</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></msubsup><mo>⋯</mo><msubsup><mrow><mi>p</mi></mrow><mrow><mi>k</mi></mrow><mrow><msub><mrow><mi>α</mi></mrow><mrow><mi>k</mi></mrow></msub></mrow></msubsup></math></span> is <span><math><mi>r</mi><mo>(</mo><mi>n</mi><mo>)</mo></math></span> or <span><math><mi>r</mi><mo>(</mo><mi>n</mi><mo>)</mo><mo>+</mo><mn>1</mn></math></span>, where <span><math><mi>r</mi><mo>(</mo><mi>n</mi><mo>)</mo><mo>=</mo><mi>k</mi><mo>+</mo><mo>|</mo><mo>{</mo><mi>i</mi><mspace></mspace><mo>|</mo><msub><mrow><mi>α</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>></mo><mn>1</mn><mo>,</mo><mspace></mspace><mn>1</mn><mo>≤</mo><mi>i</mi><mo>≤</mo><mi>k</mi><mo>}</mo><mo>|</mo></math></span>. We show that a divisor set <em>D</em> with <span><math><mo>|</mo><mi>D</mi><mo>|</mo><mo>≤</mo><mi>k</mi></math></span> achieves this bound. We calculate the maximal diameter for graphs of order <em>n</em> and divisor set cardinality <span><math><mi>t</mi><mo>≤</mo><mi>k</mi></math></span>, identifying all extremal graphs and improving the previous upper bound.</p></div>","PeriodicalId":54985,"journal":{"name":"Information and Computation","volume":"301 ","pages":"Article 105208"},"PeriodicalIF":0.8000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Maximal diameter of integral circulant graphs\",\"authors\":\"Milan Bašić , Aleksandar Ilić , Aleksandar Stamenković\",\"doi\":\"10.1016/j.ic.2024.105208\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Integral circulant graphs are proposed as models for quantum spin networks enabling perfect state transfer. Understanding the potential information transfer between nodes in such networks involves calculating the maximal graph diameter. The integral circulant graph <span><math><msub><mrow><mi>ICG</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>D</mi><mo>)</mo></math></span> has vertex set <span><math><msub><mrow><mi>Z</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>=</mo><mo>{</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>n</mi><mo>−</mo><mn>1</mn><mo>}</mo></math></span>, with vertices <em>a</em> and <em>b</em> adjacent if <span><math><mi>gcd</mi><mo></mo><mo>(</mo><mi>a</mi><mo>−</mo><mi>b</mi><mo>,</mo><mi>n</mi><mo>)</mo><mo>∈</mo><mi>D</mi></math></span>, where <span><math><mi>D</mi><mo>⊆</mo><mo>{</mo><mi>d</mi><mo>:</mo><mi>d</mi><mo>|</mo><mi>n</mi><mo>,</mo><mspace></mspace><mn>1</mn><mo>≤</mo><mi>d</mi><mo><</mo><mi>n</mi><mo>}</mo></math></span>. Building on the upper bound <span><math><mn>2</mn><mo>|</mo><mi>D</mi><mo>|</mo><mo>+</mo><mn>1</mn></math></span> for the diameter provided by Saxena, Severini, and Shparlinski, we prove that the maximal diameter of <span><math><msub><mrow><mi>ICG</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>D</mi><mo>)</mo></math></span> for a given order <em>n</em> with prime factorization <span><math><msubsup><mrow><mi>p</mi></mrow><mrow><mn>1</mn></mrow><mrow><msub><mrow><mi>α</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></msubsup><mo>⋯</mo><msubsup><mrow><mi>p</mi></mrow><mrow><mi>k</mi></mrow><mrow><msub><mrow><mi>α</mi></mrow><mrow><mi>k</mi></mrow></msub></mrow></msubsup></math></span> is <span><math><mi>r</mi><mo>(</mo><mi>n</mi><mo>)</mo></math></span> or <span><math><mi>r</mi><mo>(</mo><mi>n</mi><mo>)</mo><mo>+</mo><mn>1</mn></math></span>, where <span><math><mi>r</mi><mo>(</mo><mi>n</mi><mo>)</mo><mo>=</mo><mi>k</mi><mo>+</mo><mo>|</mo><mo>{</mo><mi>i</mi><mspace></mspace><mo>|</mo><msub><mrow><mi>α</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>></mo><mn>1</mn><mo>,</mo><mspace></mspace><mn>1</mn><mo>≤</mo><mi>i</mi><mo>≤</mo><mi>k</mi><mo>}</mo><mo>|</mo></math></span>. We show that a divisor set <em>D</em> with <span><math><mo>|</mo><mi>D</mi><mo>|</mo><mo>≤</mo><mi>k</mi></math></span> achieves this bound. We calculate the maximal diameter for graphs of order <em>n</em> and divisor set cardinality <span><math><mi>t</mi><mo>≤</mo><mi>k</mi></math></span>, identifying all extremal graphs and improving the previous upper bound.</p></div>\",\"PeriodicalId\":54985,\"journal\":{\"name\":\"Information and Computation\",\"volume\":\"301 \",\"pages\":\"Article 105208\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Information and Computation\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0890540124000737\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information and Computation","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0890540124000737","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
Integral circulant graphs are proposed as models for quantum spin networks enabling perfect state transfer. Understanding the potential information transfer between nodes in such networks involves calculating the maximal graph diameter. The integral circulant graph has vertex set , with vertices a and b adjacent if , where . Building on the upper bound for the diameter provided by Saxena, Severini, and Shparlinski, we prove that the maximal diameter of for a given order n with prime factorization is or , where . We show that a divisor set D with achieves this bound. We calculate the maximal diameter for graphs of order n and divisor set cardinality , identifying all extremal graphs and improving the previous upper bound.
期刊介绍:
Information and Computation welcomes original papers in all areas of theoretical computer science and computational applications of information theory. Survey articles of exceptional quality will also be considered. Particularly welcome are papers contributing new results in active theoretical areas such as
-Biological computation and computational biology-
Computational complexity-
Computer theorem-proving-
Concurrency and distributed process theory-
Cryptographic theory-
Data base theory-
Decision problems in logic-
Design and analysis of algorithms-
Discrete optimization and mathematical programming-
Inductive inference and learning theory-
Logic & constraint programming-
Program verification & model checking-
Probabilistic & Quantum computation-
Semantics of programming languages-
Symbolic computation, lambda calculus, and rewriting systems-
Types and typechecking